Az elsőként felfedezett Naprendszeren kívüli látogató

A 2017 októberében felfedezett különös alakú ‘Oumuamua (1I/2017 U1) objektum világszerte nagy vihart kavart, miután bebizonyosodott, hogy a csillagközi térből érkezett a Naprendszerbe.

Már 2018. május 21.-én megjelent cikk a „Monthly Notices of the Royal Astronomical Society”-ben viszont már bejelentette az első, csillagközi térből érkező látogatót. Az (514107) 2015 BZ509 objektum retrográd, ám stabil pályán kering a Nap körül, majdnem tökéletes 1:1 rezonanciával a Jupiterrel. Míg az ‘Oumuamua nem marad Napunk vonzásterében, hanem 2020 körül elhagyja azt, az (514107) 2015 BZ509 már állandó lakója Naprendszerünknek.

(514107) 2015 BZ509 pályája, a Jupiter trójai holdjaival az L4 és az L5 librációs pontokon.
Forrás: Western U., Athabasca U., Large Binocular Telescope Obs.

Az ideiglenesen Bee-Zed névre keresztelt látogató idegen voltát pályája sugallja, hiszen ilyen pályamozgással nem találkozhatunk olyan objektum esetén, ami a Naprendszerben született. Retrográd pálya nem alakulhatott ki abban az összeomló ősködben, melyből csillagrendszerünk született, mert ott minden por- és jégrészecske, minden gázmolekula egy irányban keringett.

(514107) 2015 BZ509, a Large Binocular Telescope Observatory (LBTO) felvételén
Forrás: C. Veillet / Large Binocular Telescope Observatory

Ha időben „visszapörgetjük” jelenlegi pályáját, a szimulációk azt mutatják, hogy 4,5 milliárd évvel ezelőtt érkezhetett hozzánk ez a csillagközi látogató.

Ilyen csillagközi migrációk könnyűszerrel előfordulhatnak, mert noha az egyes csillagok messze vannak egymástól – átlagosan mintegy 5 fényévnyire, avagy másfél parszekre – a csillagokat övező Oort-felhők, üstökös-zónák, ahol milliárdnyi jéghegy kering, tulajdonképpen szinte érintik egymást. Napunkhoz legközelebbi csillag a Proxima Centauri 4,24 fényévnyire, az α Centauri A és B pedig 4,36 fényévnyire található, a sorban közvetkező csillagok pedig hat és hét fényév távolságra vannak.

Az egyik legfontosabb kérdés ilyen objektumok esetén az, hogy miben különböznek Naprendszerünk anyagától. Vajon miben hasonlíthat, és miben különbözhet egy ilyen jeges planetezimál Naprendszerünk üstököseitől?

Valószínű, hogy Napunk, mint a legtöbb csillag, egy nyílthalmazban született. Ezek olyan csillaghalmazok, melyek egy közös csillagközi gázfelhőből születtek, és egyes csillagaik laza gravitációs kapcsolatban vannak. Hasonló nyílthalmaz például az M67, ami azonban túl távoli és összetétele sem sugallja ottani eredetünket. Kialakulása folyamán egy ilyen nyílthalmaz sok csillaga lépheti át e halmaz szökési sebességét, tehát sok égitestét veszítheti el. Egy ilyen csillag, Napunk testvére lehet például a HD162826, tömege, fényessége és összetétele alapján. Az alfa Centauri rendszerrel is lehet hasonló kapcsolatunk. Aszteroszeizmikus jellege, kromoszféra-aktivitása és forgási tulajdonságai egyaránt Napunkéhoz közeli, 4,85 és 5 milliárd év közötti kort sugallnak.

Ha Bee-Zed egy „rokon” rendszerből származik, összetétele kisebb eltérésekkel, de hasonló lehet Naprendszerünkhöz, ám egy egzotikusabb rendszerből származó objektum alapvetően különbözhet csillagrendszerünk anyagától.

Szerző: Balogh Gábor

Források:

Bazot, M.; Bourguignon, S.; Christensen-Dalsgaard, J. (2012). “A Bayesian approach to the modelling of alpha Cen A”. MNRAS. 427 (3): 1847–1866. arXiv:1209.0222. Bibcode:2012MNRAS.427.1847B. doi:10.1111/j.1365-2966.2012.21818.x

Cornell University Library, https://arxiv.org/abs/1805.09013

JPL Small-Body Database, https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=514107

NewScientist, https://www.newscientist.com/article/2126301-backwards-asteroid-shares-an-orbit-with-jupiter-without-crashing/

Phys.org, https://phys.org/news/2018-05-interstellar-immigrant-solar.html

Science, https://www.sciencemag.org/news/2018/05/asteroid-came-another-solar-system-and-it-s-here-stay

Sky and Telescope, https://www.skyandtelescope.com/astronomy-news/wrong-way-asteroid/

Sky and Telescope, https://www.skyandtelescope.com/astronomy-news/sun-sibling-found/

The SAO/NASA Astrophysics Data System, http://adsabs.harvard.edu/abs/2018arXiv180509013N

Thévenin, F.; Provost, J.; Morel, P.; Berthomieu, G.; Bouchy, F.; Carrier, F. (2002). “Asteroseismology and calibration of alpha Cen binary system”. Astronomy & Astrophysics. 392: L9. arXiv:astro-ph/0206283. Bibcode:2002A&A…392L…9T. doi:10.1051/0004-6361:20021074

Universe Today, https://www.universetoday.com/tag/2015-bz509/

A Meteoritkráter Expedíció a Héthatár Útifilm Szemle versenyfilmjei között!

Óriási megtiszteltetés érte a Meteoritkráter Expedíció csapatát. A Morasko-krátermezőn forgató Rezsabek Levente (második változatú) kisfilmje bekerült az országos Héthatár Útifilm Szemle versenyfilmjei közé!

Bemutatójára november 14-én szerdán 18:00 órától kerül sor Hajdúnánáson, a Bocskai Filmszínházban.

(A belépés díjtalan, de az info@nanasvmk.hu címen regisztrációhoz kötött! A versenyfilmek bemutatóját megelőzően, 16:30-tól “Föld körüli utazás a Gerecsétől Új-Zélandig” címmel 3D-s filmvetítést tekinthetnek meg az érdeklődők. A díjnyertes alkotásokat a filmfesztivál harmadik napján, november 16-án pénteken 18:00 órától vetítik.)

Szerző: Rezsabek Nándor

‘Oumuamua: van-e új (egy másik) Nap alatt?

Az elmúlt napokban szinte felrobbant az Internet attól a cikktől, melyet a Harvard Smithsonian Asztrofizikai Központ két munkatársa, Shmuel Bialy és Avi Loeb írt az ‘Oumuamua-ról (melyről itt írtunk egy összefoglalót). A publikáció szerint a Naprendszerünkbe első alkalommal kívülről érkező égitest valójában egy idegen civilizáció alkotta űreszköz volt, mely véletlenül vagy a készítői által szándékosan sodródott Naprendszerünkbe.

Fantáziarajz az ’Oumuamua-ról (ESO / M. Kornmesser)

Az elmélet meglehetősen vad és gyenge lábakon álló. Mégis, mik azok a dolgok, melyek szokatlanná teszik ezt az égitestet?

  • A pályája: ellipszis vagy parabola helyett hiperbola, ami azt jelenti, hogy “nem ér körbe”, az ‘Oumuamua így soha nem tér vissza Naprendszerünkbe.
  • Az alakja: egyáltalán nem illik bele a Naprendszer égitestjei közé: az ‘Oumuamua 400 méter hosszú, 40 méter széles, szivar-alakú égitest.
  • A sebessége: a csillagközi térből Naprendszerünkbe 26,4 km/s-mal (95040 km/h) érkezett, perihéliumban 87,3 km/s-ra (314280 km/h) gyorsult fel.

Ezek miatt természetes, hogy sokakban felmerül a gondolat, hogy az ‘Oumuamua nem természetes eredetű objektum. És bár nem lehet száz százalékosan kizárni a mesterséges eredetet, az égitestet körüllengő bizarr dolgokra van tudományos magyarázat:

Az Oumuamua pályája (Wikipédia)
  • A pályája: bár szokatlan de akárcsak a parabola vagy az ellipszis, a hiperbola is szabályos pályának tekinthető.
  • Az alakja: szokatlan formáját teljes mértékben megmagyarázza egy tanulmány, mely szerint ha egy monolitikus (egy tömbből álló) égitest elég hosszú ideig (milliárd évek) bolyong az űrben, akkor a mikrometeoritok okozta természetes kopás végállapotában létrejöhet ez a hosszú, keskeny forma.
  • A sebessége: nemrég már hírt adtunk arról, hogy kutatók egy csoportja talált néhány csillagot, melyek az ‘Oumuamua forrás-égitestjei lehetnek. Ezen csillagok valamelyikének létrejöttekor lökődhetett ki az ‘Oumuamua az intersztelláris térbe. A sebességét azonban jobban magyarázhatjuk egy kettős rendszerből való kilökődéssel, ilyet azonban (még) nem találtak. Így lehetséges, hogy az égitest sokkal régebb ideje járja a csillagközi teret.

Az ‘Oumuamua-val kapcsolatban egy klasszikus idézet jut eszembe:

“A bizonyíték hiánya nem a hiány bizonyítéka!”

A bulvársajtó által felfújt és mára tényként kezelt hírt olvasva mind szeretnénk hinni, hogy nem vagyunk egyedül a Világegyetemben, de addig, amíg nincsenek perdöntő bizonyítékok, nem jelenthetjük ki biztosan, hogy az ‘Oumuamua egy (talán már letűnt) civilizáció küldötte. Az esély természetesen mindenre, úgy erre is megvan, azonban, ha nem tudjuk ezt mivel alátámasztani, hiba lenne valótlant feltételezni. Az ‘Oumuamua pedig már jóval túl van a Jupiter pályáján, így elég kétséges, hogy sok újat fogunk róla megtudni a jövőben.

Szerző: Kovács Gergő

HÍREK: A Dawn és a Kepler alkonya, az Osiris hajnala, közeledés a Naphoz

A Dawn alkonya

Végéhez ért a Dawn űrszonda 11 éves, sikerekkel teli küldetése. Az űreszköz stabilizálásához szükséges üzemanyag kifogyott van, így a szonda működésképtelenné vált: antennái már nem tudnak a Föld felé fordulni, és a napelemtáblái sem fognak a Nap felé nézni, így az energiaellátása is véget ér. Bár ezek után még évtizedekig marad Ceres-körüli pályán, az űrszondáról már nem fogjuk hallani.

A Dawn tizenegy éve igen sikeres volt: két kisbolygóövbeli égitest körül is pályára állt, a Vesta kisbolygó, illetve a Ceres törpebolygó körül. Előbbin felfedezett egy hatalmas hegycsúcsot, a Rheasilvia-kráter közepén magasodó központi csúcsot, melyről kiderült, a marsi Olympus Mons után a legmagasabb hegycsúcs a Naprendszerben.

A Vesta a Dawn felvételén. A kép alsó felén látható a Rheasilvia-csúcs (NASA).

Utóbbin, a Ceres-en többek között felfedezett egy rejtélyes, világos foltcsoportot, az Occator-kráterben, melyről később megállapították, hogy a relatíve sötét égitesten “világító” pontok valójában sókiválások.

A Ceres, középen a rejtélyes Occator kréterrel (NASA).
A Ceres a Dawn felvételeiből összeállított animáción (NASA).

Mivel a Dawn hajtóanyaga bármikor elfogyhat, a NASA biztonsági okokból olyan pályára állította a szondát, melyen legalább két évtizedig stabilan fog a Ceres körül keringeni.

Forrás: NASA

Véget ért a Kepler missziója

A Dawn-nal ellentétben a Kepler missziója már véget ért, az űrtávcsőnek mostanra teljesen elfogyott a hajtóanyaga, így 9 évnyi működés után végleg leállt, továbbra is stabil pályán maradva a Nap körül. Küldetésének évei alatt több, mint 2600 Naprendszeren kívüli bolygót, más néven exobolygót fedezett fel, úgynevezett tranzit módszerrel, melynek során a csillagnak az előtte áthaladó bolygó okozta fényességcsökkenését mérte.  A több, mint 2600 felfedezett bolygó mellett még további 4600 exobolygó-jelölt, illetve 8 apró, lakhatósági zónában található kőzetbolygó felfedezése köthető a Kepler nevéhez.

A Kepler egy festő ábrázolásában. A küldetés rávilágított arra, hogy több bolygó lehet a Galaxisban, mint ahány csillag (NASA/Ames/Wendy Stenzel).

Forrás: NASA

Közeledik a Bennuhoz az OSIRIS-REx

Az OSIRIS-REx, mely december 3-án érkezik meg úticéljához, a Bennu kisbolygóhoz, pár napja egy káprázatos fotóval örvendeztetett meg minket. A montázs október 29-én, az aszteroidától 330 kilométerre készült.

A 330 km-re lévő Bennu aszteroida (NASA).

Forrás: NASA

Rekord közel a Naphoz a Parker Solar Probe

November 11-én kerül ember alkotta űreszköz legközelebb a Naphoz, a Parker Solar Probe mindössze 47 millió kilométerre közelíti meg központi csillagunkat, megdöntve  az amerikai-német Helios-2 1978-as, 43 millió kilométeres rekordját. A Nap külső légkörét vizsgáló űrszondának ez lesz az első “napsúrolása” a 24-ből, melyek során egyre kisebb távolságra suhan el csillagunk mellett.

Forrás: NASA

Szerző: Planetology.hu

Könyvajánló: Arthur C. Clarke – 2001 Űrodisszeia

Idén 50 éves a science fiction fekete monolitja, minden tudományos-fantasztikus mű ősatyja, Arthur C. Clarke és Stanley Kubrick közös műve, a kikezdhetetlen és örök életű klasszikus, a 2001: Űrodüsszeia.

Hogy tiszta legyen a kép, egy fontos dolgot már a legelején le kell szögezni: a 2001 valójában nem egy könyv, amit később, “lebutítva” filmvászonra vittek. A 2001 egy könyv és egy film egyszerre, egy időben (!) készült együttese. A két mű közt természetesen vannak apró különbségek, már a cím sem egyezik: míg a film címe Űrodüsszeia, addig a könyvé Űrodisszeia. Mivel azonban jelen esetben a könyv és a film különösen szorosan kapcsolódik egymáshoz, nem mehetünk el utóbbi mellett sem szó nélkül.

Arthur C. Clarke: 2001 – Űrodisszeia. Kiadó: Metropolis Media Group. Kiadás éve: 2015. ISBN: 9786155508073. Fordította: Göncz Árpád.

Az emberiség hajnalán találjuk magunkat. Majomember őseink a kihalás szélén küzdenek a túlélésért és sajnos rosszul áll a szénájuk. Egyik reggelre virradóra azonban egy különös “jövevényre” lesznek figyelmesek: egy hatalmas, fekete kőtömbre, a monolitra, mely hozzásegíti az ember ősét nemcsak a túléléshez, hanem a felemelkedéshez is…

Változik a kép, több millió évet ugrunk előre az időben.

Az ember már kijutott az űrbe és állandó bázist létesített a Holdon. Heywood Floyd, az Országos Űrhajózási Tanács elnöke épp a Clavius-kráterben lévő bázis felé tart. Mint kiderül, a Tycho kráterben egy rejtélyes mágneses anomáliát fedeztek fel, melyet TMA-1-nek neveztek el…

A könyv következő fejezetében a Discovery űrhajóban találjuk magunkat, úton a Szaturnusz felé, ahova a monolit a rejtélyes jelet küldte. Itt jelentős különbség a film és a könyv között, hogy Kubrick filmjében, financiális okokból a Jupiterre tart az űrhajó. A hosszú út alatt testközelből csodálhatjuk meg a Jupitert, megtudhatjuk, hogyan hoznak létre a Discovery űrhajósai mesterséges gravitációt, megismerkedhetünk magával a legénységgel, ugyanakkor szembesülnünk kell azzal is, hogy az út egy nem várt konfliktust is tartogat…

A könyv végéhez közeledve a Discovery úti céljához, a Szaturnuszhoz ér, a hajó parancsnoka, Dave Bowman pedig rátalál utazása következő mérföldkövéhez, mely a bolygó Iapetus nevű holdján várja. Az ezt követő jelenetek bemutatására pedig az emberi érzékszervek már nem elegendőek…

Arra a kérdésre pedig, hogy az egész végén hova jut Bowman és miért, már mindenkinek saját magának kell megtalálnia a választ.

Mind a könyv, mind a film kortalan, olyan alapmű, amit akárhányszor újra el lehet olvasni/meg lehet nézni, mindig találhatunk benne eddig megválaszolatlan kérdéseket. Elsőnek a könyv elolvasása ajánlott, majd ha ezen túl vagyunk, jöhet a neheze, a film. Előbbi lebilincselő és olvasmányos, ugyanakkor tudományosan is hiteles, mint Clarke művei általában; Kubrick filmje viszont már sokkal nehezebb falat, sokkal több kérdést hagy megválaszolatlanul. Elég csak Clarke-ot idézni:

Ha teljesen érted az Űrodüsszeiát, akkor hatalmas kudarcot vallottunk. Sokkal több kérdést szándékoztunk feltenni, mint megválaszolni.

A 2001 (többek között) azért is nagyszerű mű, mert rengeteg oldalról lehet vizsgálni és értelmezni: ahány ember, vallás és világnézet, annyiféle a mű értelmezése is. Hogy pedig mi miért történt a 2001-ben és mi köze mindennek a rejtélyes monolithoz, kimeríthetetlen beszédtéma.

Mint sci-fit, a 2001-et legtömörebben talán a Discovery űrhajó AE-35-ös egységével tudnám azonosítani:

Hibátlan.

 

Szerző: Kovács Gergő

 

A Sericho pallazit

2016-ban két testvér a kenyai Habaswein falu közelében az elkóborolt tevéit kereste. Feltűnt nekik, hogy sok, viszonylag nagy köveket látnak, pedig azon a területen ritka dolog köveket találni. Arra gondoltak, hogy a kövek talán meteoritok, hiszen a tevehajcsárok második bevételi forrása, hogy meteoritgyanús köveket el tudnak adni a városi kereskedőknek. Néhány hetet arra szántak, hogy a köveket összegyűjtsék habaswein-i házuk udvarába. Egy idősebb falubeli elmondta nekik, hogy ő és fivérei már gyerekkorukban játszottak ezekkel a fura kövekkel. A két szorgalmas testvér közel egy tonnányi követ gyűjtött össze. A köveket később vizsgálat alá vették és kiderült, hogy a kövek valóban meteoritok, méghozzá a legritkább típusú un. kő-vas meteorit, azaz pallazit. 2017. január elején Michael Farmer kapott egy e-mailt, ami egy 107 kg-os pallazit fotóját tartalmazta. Nairobiba utazott, és megvásárolta ezt a követ. Két héttel később visszatért Kenyába Moritz Karlhoz, és Habasweinbe utazott. Itt mutatták meg a már említett testvérek, hogy több mint egy tonna példányt hordtak össze a házuk udvarán.

A képen Michael Farmer látható, aki többször járt Kenyában. A képen a Thika meteorit főtömegével (3575 gramm) és annak megtalálójával, 2011. 07. 16-án. (Mihael Farmer engedélyével)

Tehát Kenyában vagyunk, Isiolo megyében. Habaswein-től nyugatra és Sericho-tól délre lévő területen egy kb. 45 km-es szórásmezőről származnak a begyűjtött példányok.

Kilogramm alatti példányoktól 500 kg közötti tömegeket találtak, ill. találnak. A mai napig 2800 kg-ot gyűjtöttek össze ebből a meteorit hullásból. (Tudom, hogy a „vájt fülű” gyűjtők hullottnak (fall) csak a szemtanús eseményt ismerik el, a többi csak talált (found), no de ez sem létrán jött le anno.)
A falubeliek még ma is találnak darabokat, többnyire a felszínen, ezek döntő többsége 50 kg-nál kisebb példány. A felszínen talált meteoritokon minimális az időjárás okozta hatás, öregedés. Sok példányon található az olvadási kéreg nyoma. Több repülés orientált példányt találtak, köztük egy 129 kg-os és két 16 kg-os mintát.

A Sericho olivin kristályai általában lekerekítettek, és színeik a csillogó zöldtől a narancsig terjednek. A Sericho pallazit fémben gazdag területei jól fejlett Widmanstätten-mintákat mutatnak. A meteorit kisebb darabjai bizonyítják, hogy a beérkező meteoroid fragmentálódott amikor hangsebesség közeli sebességre lassult. Néhány darabon, foltokban, megmaradt a fúziós vagy olvadási kéreg.

Habaswein környéke (01°5’41.16″N, 39°6’8.30″E)

Természetes velejárója a dolognak, hogy amint egy kő dollárokat hoz, komolyabb keresés is elindul, ennek következtében néhány, már a felszín alatt lévő minta is előkerült.

A képen egy nagyobb példány kiemelése látható (NFD, 2017. 06. 13)

Mivel a nagyobb darabokat Sericho falu közelében találták, a pallazit végső neve Sericho lett és 2017. 08. 06-án tették „hivatalossá”, majd a Meteoritical Bulletin, 106. közleményében jelent meg, hogy lajstromba vették.

A pallazitok valóban nagyon ritkák, a hullásoknak csupán 1,2%-a pallazit. A pallazitok Péter Simon Pallasról (1741-1811) kapták a nevüket. Ő adott elsőként részletes leírást egy Krasznojarszk közelében a hegyekben talált érdekes kőzetről. Később derült ki, hogy a minta égi eredetű.

A kisbolygó-méretű test köpeny-mag határáról származhatnak ezek az anyagminták. A két fő alkotó ásvány, fémes vas-nikkel és az olivin. Mellettük kisebb mennyiségben tartalmaznak még schreiberzitet, troilitet és foszfátokat is.

A Sericho meteorit geokémiai vizsgálatának eredménye:

Olivine Fa12.3±0.1, FeO/MnO=57.4±5.4, Cr2O3=0.03±0.01, n=15; kamacite Ni=7.1±0.6 wt%, Co=0.81±0.02 wt%, P=0.06±0.02 wt%, n=17; and schreibersite (Fe1.51Ni1.45Co0.01)P, n=3.

A vizsgálatot végző személyek; L. Garvie, A. Wittmann, D. Schrader, (ASU)
(forrás: MetBull)

Saját, 29,95 grammos példányom

Még annyit jegyeznék meg, hogy a Sericho nem a legstabilabb pallazitok egyike. Ezért célszerű zárt dobozban, sok szilikagélt használva tárolni.

 

Szerző: Dénes Lajos

Szondák a Merkúr és Vénusz vonzásában – I. rész

Naprendszerünkben a bolygónk és csillagunk közti közel 150 000 000 km-es távolságot két bolygószomszédunk: a Merkúr és a Vénusz pályája is keresztezi. Mindketten a Naprendszerünk belső bolygói, bolygószomszédaink, tanulmányozásuk (leginkább a Merkúr esetében) mégis inkább nagyrészt csak távcsöveinken keresztül zajlik. Az okok, amelyek miatt e két bolygó kutatása háttérbe szorult a Mars, vagy még inkább a Hold kutatásával szemben: egyrészt a Nap körüli pályájuk elérésének technikai nehézségei (főként megint csak a Merkúr esetében), valamint a bolygón uralkodó szélsőséges körülmények (főként a Vénusz esetében). Mindkét ok eddig nehézséget állított a kutatók és mérnökök elé, ám remélhetőleg a technikai fejlődés, a 21. század új ötvözetei és technológiái, – valamint természetesen a szándék – megnyitják az utat a jobb megismerhetőségük felé. A múlt, a jelen és a jövő űreszközeit vesszük most sorra, melyek (egyik rész-) feladata e két bolygó kutatása.

A Merkúr és a Vénusz. (Wikipédia)

Az űrszondák

E téma taglalásánál nem mehetünk el a fogalom megtárgyalása mellett: az űrszondák olyan személyzet nélküli űreszközök, melyek célja hogy (eddig főleg Naprendszerünkben található) bolygók/holdak felszínét, összetételét, légkörét, jelenségeit, stb. valamilyen formában vizsgálják.

Típusaikat/funkciójukat tekintve lehetnek:

  • elrepülő egységek (flybyerek): elrepülő egységnek, elrepülés jellegű küldetésűnek azt az űrszondát nevezzük, mely lassítás és orbitális pályára állás nélkül halad el egy-egy égitest mellett, annak relatív közelségében, miközben műszereivel adatot gyűjt róla. Egy-egy csillag, bolygó vagy hold ilyen módon történő megfigyelése általában csak részfeladat a szonda útja során. Az elhaladás általában nem kizárólag tudományos célú: az irányítás azért tervezi a szonda pályáját közel egy-egy bolygóhoz, hogy annak tömegvonzását kihasználva ún. gravitációs hintamanővert hajtson végre, mely során az űreszköz sebességet nyer és irányt is változtat. Egy-egy ilyen művelet alkalmazásával kevésbé energiaigényes pályán juthatunk el távolabbi égitestekhez is, így az elrepülés célja elsődlegesen a hintamanőver, és másodlagosan a tudományos adatgyűjtés és megfigyelés. Erre példa az 1973-ban indított Pioneer-11 bolygóközi űrszonda, mely a Jupiter körüli hintamanőverrel jutott el a Szaturnusz közelébe. Végső célja, hogy a Sas csillagkép irányába haladva, 4 millió év múlva megközelítse a legközelebbi csillagokat.

A Pioneer-11. (NASA)
  • keringő egységek (orbiterek): a keringő egységek orbitális pályára állva térképezik fel a bolygót vagy épp kommunikációs átjátszóegységként funkcionálnak a földi irányítás, és a bolygón lévő landoló egységek között. Hordozhatnak kamerát, amely a látható és infravörös/röntgen/stb tartományban készít képeket; spektrométert, az atmoszféra jellemzőinek vizsgálatához; radiométert, a hőmérséklet vizsgálatához; magnetométert, a mágneses tér vizsgálatához; pordetektort, a mikrometeorokat és a bolygóközi térben lévő porrészecskéket vizsgálatához; radart, a domborzat vizsgálatához; sugárzásmérőt, a bolygó által kibocsátott sugárzás vizsgálatához; részecskecsapdát; neutrondetektort, stb. Erre példa a Hold körül keringő LRO (Lunar Reconnaissance Orbiter), mely 2009 óta gyűjti az adatokat elsősorban a későbbi holdexpedíciók számára (potenciális leszállóhelyek keresése és feltérképezése, a Holdon található, emberes holdexpedíciók esetén felhasználható erőforrások keresése és feltérképezése, a holdi sugárzási környezet vizsgálata)

A Lunar Reconnaisance Obriter. (NASA)
  • becsapódó egységek (impaktorok/penetrátorok) és légköri szondák: a becsapódó egységek az égitest felszínére irányítva, azt fékezés nélkül közelítik meg. Műszereik az utolsó másodpercig dolgoznak, és folyamatosan adatokat küldenek az irányítóközpont felé. A történelem első impaktora a 1959 szeptemberében felbocsátott szovjet Luna-2 volt. Tervezett feladata a Hold megközelítése/eltalálása, a kozmikus sugárzás, a napszél, a mikrometeoritok, az interplanetáris anyag és a Hold mágneses terének vizsgálata volt. Becsapódását akkoriban a MTA Csillagvizsgáló Intézetében, valamint a Bajai Obszervatóriumban is detektálták.
    A légköri szondák a becsapódó egységek azon fajtái, melyek légkörrel rendelkező bolygók, gázóriások atmoszférájába érve gyűjtenek adatot annak összetételéről, végül a felszínbe csapódva, vagy a elégve/nyomás által összeroppantva fejezik be pályafutásukat. Erre példa a Galileo légköri szonda (Galileo probe), mely az azonos nevű Galileo szondáról leválva lépett be a Jupiter légkörébe és a 150 km-es ereszkedése során 58 percnyi adatot gyűjtött a helyi időjárásról, majd túlhevült a légkörben és elégett.

A Galileo űrszonda. (NASA)
  • leszálló egységek (landerek): a leszálló egységek olyan űrszondák, melyek az égitest felszínén hajtóművük/hőpajzsuk/ejtőernyőik/légzsákjaik révén „puha” landolást valósítanak meg. Landolásuk után földtani, meteorológiai, szeizmológiai, fotometriai, stb méréseket tudnak végezni, valamint lehetőség szerint képesek talajminta Földre való visszajuttatására is. Remek példa erre az amerikai Viking-1 űrszonda, mely 1976-ban landolt a Mars felszínén.

Távolabbi desztinációk esetén a kutatást végző űrügynökség úgy tervezheti meg az űrszondát, hogy az tartalmaz egy keringő és egy leszálló egységet is, az égitest felszíni és orbitális pályán való egyidejű, költséghatékonyabb tanulmányozása érdekében.

A Viking-1. (NASA)
  • felszíni mozgó egységek (roverek): a roverek mozgásra képes leszálló egységek. Leszállásuk után a földi irányítóközpont vezérli őket, utasítások folyamatos küldésével, általában az égitest körül keringő szondák, műholdak adattovábbítási funkciói segítségével. Az eddigi legsikeresebb rover az Opportunity, mely 2012-ben landolt a Mars felszínén. Jelenleg már több mint 5200 marsi napja végez tudományos méréseket, eközben már megtette a 45. kilométerét.

Az Opportunity űrszonda a Marson. (NASA)

A Merkúr

A Merkúr a Messenger felvételén. (NASA/APOD)

Naprendszerünk legkisebb és legbelső bolygója a Merkúr. Saját holdja nincs. Mérete a Földnek 38%-a (egyenlítői átmérőiket összevetve), a Holdnak 140%-a. Tömege a Földének 5,5%-a, így a Naprendszer 2. legsűrűbb bolygója. Tengely körüli forgásideje 58,6 földi nap, Nap körüli forgásideje 87,9 földi nap. A Merkúr Föld típusú, vagyis kőzetbolygó, sok tekintetben hasonlít Holdunkhoz.

A bolygó vékony atmoszférával rendelkezik, mely főként hidrogénből, héliumból, oxigénből, nátriumból, káliumból és kalciumból áll. Keletkezésüket tekintve a származhatnak a Merkúr kérgében lévő anyagok radioaktív bomlásából, valamint napszélből.

Nap körüli orbitális pályája elliptikus, inkább egy tojásformához, mint körhöz hasonlatos (aphélium: 69 817 079 km, perihélium: 46 001 272 km), tengelyferdesége 2,11° Felszínét, a Holdhoz hasonlóan kráterek, medencék, síkságok tarkítják. A bolygó fémes magja a teljes térfogatának 42%-át teszi ki (szemben a Föld 17%-ával), amely miatt jelentős mágneses tere van.

A Merkúr kutatói

A Merkúrt már az i.e. 14. században is ismerték, első ismert feljegyzései asszír csillagászoktól maradtak ránk. A rómaiaktól maradt ránk a Merkúr elnevezés. Első távcsöves megfigyelése Galilei nevéhez fűződik.

A 20. században elindult „űrkorszak” új időszámítást jelentett a kutatásban is, mivel már nem csak távcsöveinken keresztül, hanem űrszondákkal is vizsgálhatjuk a Merkúrt. Ennek ellenére a bolygó eddig kevésbé került a kutatók célkeresztjébe, mivel szondás kutatása nehézség elé állítja a mérnök-szakembereket. A fő probléma, hogy minél közelebb keringünk a Nap körül, annál gyorsabb sebességre kell felgyorsulnunk. Míg a Föld másodpercenként max. 30,28 km-t tesz meg a Nap körül (365 nap alatt kerüli meg), ez az érték a Merkúr esetében majdnem a duplája, 58,98 km/s (88 nap alatt). A bolygót elérni kívánó szondának el kell érnie ugyanezt a sebességet, de egyúttal az orbitális pálya belépési pontjának közelében lassítania is kell annyira, hogy ténylegesen keringési pályára állhasson. Jelenleg több üzemanyag szükséges a Merkúr eléréséhez, mint a Naprendszer elhagyásához.

  • Mariner-10: Az 1973. november 3-án indított Mariner-10 űrszonda elsődleges feladata a Vénusz és a Merkúr atmoszférikus és felszíni vizsgálata volt. Műszerparkja magnetométerből, UV sugárzásmérőből, UV spektrométerből, kamerákból, töltött részecske teleszkópból, IR sugárzásmérőből és egy plazmadetektorból állt. Mivel a Merkúr megközelítése a fent tárgyalt problémába ütközik, a Mariner fejlesztőmérnökei úgy döntöttek, hogy egy, a Vénusz körül végrehajtott hintamanőverrel juttatják majd el a szondát a Merkúr közelébe, egy olyan Nap körüli pályára, mely során a szonda kis pályakorrekcióval minden egyes keringése során találkozik majd a bolygóval (a Merkúr épp két Nap körüli fordulatot tesz meg eközben). Az első elrepülésre 1974. március 29-én került sor, ez volt a történelemben az első alkalom a planéta ilyen közeli tanulmányozására. A Mariner-10 észlelte a Merkúr mágneses mezőit, valamint több mint 600 fotót készített. A következő két elrepülésre 1974. szeptember 21-én, és 1975. március 16-án került sor. Mivel mindhárom alkalommal a bolygó ugyanabban a Nap körüli helyzetben volt, a Mariner-10 csak a Merkúr 45%-át tudta feltérképezni. 8 nappal az utolsó elrepülés után a szonda manőverezésre használt nitrogén hajtóanyaga elfogyott, a mérnökök a rádióadójának lekapcsolása mellett döntöttek. A Mariner-10 valószínűleg jelenleg is Nap körüli pályán halad, bár berendezéseit a napsugárzás már jelentősen károsíthatta.

A Mariner-10. (NASA)
  • MESSENGER: A 2004. augusztus 3-án indított űrszonda neve (melynek jelentése: hírnök, futár – ahogy a Merkúr bolygó névadója is a római Mercurius, az istenek szárnyas csizmájú hírnöke) egy mozaikszó: MErcury: Surface, Space ENvironment, GEochemistry, and Ranging – azaz Merkúr: Felszín, Űrbeli környezet, Geokémia és Felderítés. Ezen űreszköz lett a bolygó első állandó keringő kísérője, mikor 2011. március 18-án a Merkúr körül pályára állt. Előtte olyan Nap körüli pályán mozgott, mely során kétszer elrepült a Vénusz, és háromszor a Merkúr körül, majd a negyedik közelítés során állt végleg pályára a bolygó körül. Műszerparkja képalkotó berendezésekből, gamma sugárzás és neutron spektrométerből, magnetométerből, lézeres magasságmérőből, atmoszféra és felszínösszetétel vizsgáló spektrométerből, töltött részecske és plazma spektrométerből és röntgen spektrométerből áll. Az első három elrepülés során befejezte a Mariner-10 munkáját és lefotózta a bolygó 95%-át, mérte a mágneses mezőt, bizonyítékot talált korábbi vulkanikus tevékenységre, valamint – nem várt módon – víz jelenlétét mutatta ki a Merkúr exoszférájában. Végső pályára állása után az eredetileg 2012-ig tartó küldetését egy évvel meghosszabbították. 2013-ban két, a közelben elhaladó üstökös tanulmányozásában is részt vett. 2015-re az űrszonda hajtóanyaga elfogyott, a fedélzetén megmaradt hélium felhasználásával az irányítóközpont a Merkúr felszínébe vezette. A becsapódásra 2015. április 30-án került sor a bolygó Suisei Planitia nevű medencéjében.

A Messenger a Merkúrnál. (NASA)

 

  • BepiColombo: A BepiColombo űrszonda (mely nevét Giuseppe „Bepi” Colombo olasz asztrofizikus után kapta, aki nevéhez fűződik többek közt a hintamanőver kidolgozása) az Európai (ESA) és a Japán Űrügynökség (JAXA) közös projektje a Merkúr tanulmányozására. A küldetés tulajdonképpen egy műholdpár együttes indítását takarja: a Mercury Planetary Orbiter (MPO, gyártja az ESA), és a Mercury Magnetospheric Orbiter (Mio/MMO, gyártja a JAXA), melyek együtt a Mercury Transfer Module egységen (MTM, gyártja az ESA) indultak el 2018. október 20-án (a hordozóeszköz egy Ariane-5 rakéta). Az ESA számára a részegységeket az Airbus gyártja.

A szondapár 7 évig fog utazni, meghajtásáról ionhajtóművek gondoskodnak. 2025 decemberében fognak a Merkúr körül orbitális pályára állni, majd szétválva kb. egy éven át tanulmányozzák a bolygót. Fő feladataik: egy csillagához közeli bolygó keletkezésének és fejlődésének tanulmányozása; a Merkúr, mint bolygó tanulmányozása (alak, belső szerkezet, összetétel, geográfia, kráterek); az exoszféra vizsgálata; a magnetoszféra és mágneses mező vizsgálata; valamint Einstein relativitáselméletének igazolásához is igyekeznek hozzájárulni (a „paraméterezett poszt-newtoni formalizmus” gamma és béta értékének nagy pontosságú megmérése).

Az MPO műszerparkja: lézeres távolságmérő; gyorsulásmérő; magnetométer; IR spektrométer; gamma és neutronspektrométer; röntgen spektrométer; UV spektrofotométer; semleges és töltött részecskeelemző; nagy felbontású és sztereokamerák; valamint napintenzitást vizsgáló röntgen és részecske spektrométer.

Az MMO műszerparkja: elektron analizátorok, ion analizátorok, tömegspektrométer, nagy energiájú részecskeelemzők elektronok és ionok részére, magnetométer, plazmahullám elemző, kén atmoszféra képalkotó; valamit kozmikus por elemző.

A BepiColombo. (ESA)

 

Szerző: Szekretár Zsolt

(folytatása következik)

BepiColombo: irány a Merkúr!

Ma, október 20-án, helyi idő szerint hajnali 3:45-kor indult el a Merkúr felé az európai (ESA) – japán (JAXA) koprodukcióban készült BepiColombo nevű űrszonda a dél-amerikai Kourou Űrközpontból, Francia Guyanából.

Az ESA és a JAXA közös küldetése, a BepiColombo. (Kép: Arianespace.com)

A BepiColombo célja Naprendszerünk legbelső bolygója, a Merkúr. Küldetésének célja egyrészt új technológiák, például a Nap hőjének ellenálló anyagok tesztelése; másrészt a Merkúr eddig feltáratlan rejtélyeinek kivizsgálása. Valójában nem is egy, hanem két űrszonda utazik a bolygó felé,  egy európai és egy japán szonda, összekapcsolódva. Feladataik közé tartozik többek között a Merkúr mágneses mezejének, belső szerkezetének, rejtélyes zsugorodásának vizsgálata épp úgy, mint annak a kiderítése, hogyan jöhetett létre egy bolygó ilyen közel a Napunkhoz.

A fellövés pillanatai. Képek: ESA/facebook.

Az űrszonda megérkezéséig azonban sokat kell várni: a különböző hintamanőverek miatt – melyeknek célja a szonda pályájának a Merkúr pályájával történő minél pontosabb szinkronizálása – a BepiColombo csak 2025. decemberében fog pályára állni a bolygó körül, melyet a tervek szerint két évig fog tanulmányozni.

Kép: Arianespace.com

Forrás: ESA, Arianespace, Facebook.

Szerző: Planetology.hu

Olvassunk is “Az első ember”-ről!

A jövő esztendő kerek évforduló az egyetemes tudománytörténetben, sőt, az emberi történelemben egyaránt. 50. évfordulója a valaha volt egyik legnagyszerűbb emberi vállalkozásnak, modern kori „földrajzi” felfedezésnek. 1969-ben az Apollo-11 asztronautái révén az emberiség elküldte követeit egy idegen égitestre, s Neil Armstrong a Hold felszínére lépett.

Az évfordulós megemlékezések már 2018-ban megkezdődtek. Jómagam, tudományos újságíróként igen aktív vagyok ebben, de nálam sokkal komolyabb szereplők játszanak főszerepet mindebben. Az októberi hónap újdonsága a Queen együttes legendás gitárosának, az asztrofizikus Brian May-nek pazar holdfotós munkája. Emellett a mozik is most tűzik műsorra az „Az első ember” című alkotást. Az űrkutatás és a csillagászati barátai lélegzet visszafojtva készülne a premierre.

Ugyanakkor mindez nem marad pillanatnyi élmény! Az Akkord Könyvkiadó jóvoltából 560 oldalon, szép dizájnú védőborítóval, keményfedeles formában, kézzelfoghatóan is napvilágot látott „Az első ember”. A társkiadó, a GABO jóvoltából elsők között vehettem kézbe James R. Hansen munkáját. A szakszerű fordítás Both Elődöt és Dancsó Bélát, a téma kiváló hazai ismerőit dicséri. A kötet a lehető legrészletesebb Armstrong-életrajz. A családfától át gyermekkoron át a felnőtté válásig. A haditengerészeti pilótától kezdve a kutatópilótán át az űrhajósig. Középpontban a legnagyobb tettel, a Holdra lépéssel, majd a legendává válással. Mindez remek fotókkal illusztrálva, rendkívül sok tényadattal megalapozva, mindeközben olvasmányos stílusban.

Nézzük meg tehát a filmet, de utána igyekezzünk az adott bevásárlóközpont valamely’ könyvesboltjába, megéri!

Szerző: Rezsabek Nándor