Debrecentől Kabáig

A debreceni Magnitúdó Csillagászati Egyesület néhány oszlopos tagja 2020. október 3-án, egy szakmai kirándulás keretében Kabára utazott, hogy felkeresse az 1857-ben hullott meteorit emlékműveit. Szoboszlai Endre cikke.



Ellátogattunk a híres kabai meteorit lezuhanási helyére

Október első szombatján kirándulást szerveztünk a kabai meteorit lezuhanási helyére, Kaba város határába. Először a város központjában megnéztünk minden látnivalót, szobrokat, épületeket… Többek között láttuk a központban felállított emlékkövet is, melyre a meteorithullás tényét “vésték” kőbe, majd kimentünk a határ azon pontjához, ahol a lezuhanás helyén felállított emlékkövet találhatja meg minden “csillagász-zarándok“.

A hullás helyén. Fotók: Károlyi Gábor, Zajácz György


A szenzációs esemény még 1857. április 15-én este történt Kaba város határában.

Ekkor hullott le a világ talán leghíresebb, majd három kilogrammos szenes kondrit meteoritja, melyről kevesen tudják, hogy megtalálása lényegében egy lovasgazdának és annak lovának köszönhető… A korabeli híradások kisebb nagyobb eltérésekkel számolnak be az eseményről. A történés valószínűleg a következő lehetett: Szilágyi Gábor a házának tornácán elszenderült. Majd a szabadtéri szundikálásból arra riadt fel, 22 óra körül, hogy nagy robaj van! Pillanatokon belül az égbolton megpillantott egy fényes tűzgolyót, mely lángoló csóvát húzott, majd pár pillanat múlva becsapódott, vélhetően a közelben. A földi légkörbe beérkező, száguldó meteoritot látta a gazda. A meteorit a súrlódás miatt felizzott, külső része elégett, de így is egy közel három kilogramm tömegű szenes kondrit meteorit kerülhetett a tudomány kezébe…



A maga módján a derék ló is jelzett

Másnap a figyelmes gazda kilovagolt a tanyájára, de útközben, a becsapódás közvetlen közelében a lova megbokrosodott, majd horkantott és végül nem akart tovább menni! Ekkor Szilágyi Gábor meglátta a becsapódás helyét, melyet röviddel a megtalálás után több ismerősével feltárt. Ezt követően szerencsére a település elöljárósága is hírt kapott a ritka égi-földi eseményről, majd értesítették a Debreceni Református Kollégiumot. A tudósoknak köszönhetően ezt követően indult a világhírnév felé a ritka égi ajándék. Az évtizedek során sok város (Göttingen, Bécs, London, Moszkva, Párizs stb.) világhírű intézeteibe is elkerült a kő pár lenyesett darabja, elemzésekre. A kabai meteorit korabeli vizsgálata számos új felismeréssel ajándékozta meg a tudományt, mivel különleges, ritka összetételű (szerves anyagot is találtak benne). Ráadásul ez a meteorit a Naprendszerünk kezdeti időszakának a hírnöke lett, hiszen anyaga a jó négymilliárd évvel ez előtti ősi állapotokat őrizte meg!

A város több helyen is példamutatón megőrizte az esemény emlékét


A Debreceni Kollégium nem hagyta elvinni a követ

A világhírnévre szert tett kabai meteoritot a korabeli Habsburg-udvar szerette volna megkaparintani, azonban a Debreceni Református Kollégium vezetősége ezt ügyes fondorlatokkal meghiúsította! Így a ritka égi ajándék eredeti fődarabja, mely a mintavételezések miatt ma már csak körülbelül 2,6 kg, jelenleg is a Debreceni Református Kollégium féltve őrzött kincse.
Kaba város a becsapódás napját, április tizenötödikét, a közelmúltban a Város Napja ünnepének nyilvánította, és emlékhelyet létesített a helyszínen.

Akik részesei voltak a kirándulásnak: Gyarmathy István, Károlyi Gábor, Károlyi Gáborné Eta, Kocsis István, Simándiné Éva, Szoboszlai Endre, Zajácz György.

Forrás: MACSED

Teljesítette küldetését a SMOG-P

A SMOG-P, a világ első működő 1-PocketQube (5x5x5cm) méretű műholdja 2020. szeptember 28-án megtette utolsó Föld körüli pályáját és sűrűbb közegbe érkezve megsemmisült. Magyarország második műholdját 2019. december 6-án állították pályára és közel 10 hónapig folyamatosan küldte a mérési eredményeket. Az űreszköz működő műholdként fejezte be küldetését, melynek során a földfelszíni digitális műsorszóró adók űrbe -feleslegesen- kijutó jeleit mérte, amit elektromágneses szennyezettségnek nevezünk. Ennek eredménye egy, a Föld teljes felszínéről alkotott elektroszmog térkép (2. ábra).

1. ábra. A SMOG-P, a világ első működő 5x5x5 cm-es műholdja
2. ábra. A Föld elektroszmog térképe

Fejlesztése 2014-ben indult, teljes egészében a Budapesti Műszaki és Gazdaságtudományi Egyetemen készült, oktatók irányításával, egyetemi hallgatók aktív részvételével, oktatási keretbe illesztve, szponzorok támogatásával. A fejlesztést a Villamosmérnöki és Informatikai Karon a Szélessávú Hírközlés és Villamosságtan tanszék oktatók irányításával fogta össze. A fejlesztésben aktívan részt vettek a Gépészmérnöki Kar hallgatói, valamint külső szakértők is. A felbocsátás költségét a Villamosmérnöki és Informatikai Kar biztosította, a Külgazdasági és Külügyminisztérium támogatásával.

A projekt eredeti terve szerint a SMOG-1 2017-ben startolt volna, azonban a rakéta indításának többszöri elhalasztása kétségessé tette projekt indulását. Mivel a műholdból két darab repülő példány készült, így másik start lehetőséget keresett a csapat az eredetileg itthon maradó példánynak. Az új időpont új nevet kívánt, így az előfutár a SMOG-P, mint prekurzor elnevezést kapta. Végül 2019. decemberében elrajtolhatott a RocketLab Electron nevű rakétájával az új-zélandi Mahia-félszigetről. Fő feladata mellett másodlagos küldetésként egy Totál Ionizáló Dózis mérő rendszer kapott helyet a műholdban, illetve számos fedélzeti telemetria adatot is szolgáltatott.
Életútja során a SMOG-P jeleit több, mint 100 rádióamatőr vette szinte minden kontinensről. Többek közt nekik is köszönhető az az adatmennyiség, amit képesek voltunk begyűjteni.

Összességében 238349 különböző csomagot küldtek be a vevőállomások a SMOG-P-ről. Méréseinek köszönhetően képet alkothattunk az űrbe kijutó elektromágneses szennyezettség mértékéről. Ezeket szemléletes ábrákon mutattuk be területi elosztás szerint (2. ábra) vagy akár egy-egy területre jellemzően frekvenciatartomány szerint is (3. ábra).

3. ábra. Mérési eredmények Európa felett (kék) és az Antarktisz felett (szürke)

A műhold pályájának magassága (4. ábra) az utolsó hetekben drasztikusan csökkent, ami a részecskesűrűség exponenciális növekedésével magyarázható. Ennek eredményeképpen hamar elérte a kritikus 160-180 km-es pályamagasságot. Ezen a ponton már csak órákban mérhető a 2 műhold hátralevő élete: 1-2 körön belül néhány pillanat alatt elég a részecskékkel való ütközés során. Mindeközben az ATL-1, a harmadik magyar műhold is hasonló jövővel néz szembe, azonban a nagyobb méretének és tömegének köszönhetően néhány nappal később várható a visszatérése. Működését tekintve szintén sikerekkel büszkélkedhet: az indulás óta megszakítás nélkül, folyamatosan küldi a műsorszóró adók teljesítményének és a hőszigetelő anyagokkal végzett mérések eredményét.

4. ábra. A SMOG-P és ATL-1 pályáinak magassága a felbocsátástól a visszatérésig

A SMOG-1-et 2020. szeptemberében a római székhelyű G.A.U.S.S. kutatóintézetben adták át, az Olasz Űrügynökség (ASI) és a római La Sapienza Egyetem műszaki és űrkutatási karának társintézményében. Itt fog bekerülni az Unisat-7 nevű 32 kg-os műhold egyik kidobó szerkezetébe, ahonnan várhatóan 2021. márciusában fogják pályára állítani Magyarország következő műholdját.

Ég Veled, SMOG-P!
Forrás: Facebook

Sajtókapcsolat:
BME VIK, Dallos Györgyi PR felelős
A SMOG műholdak weboldala: https://gnd.bme.hu/smog1, https://gnd.bme.hu.
Felhasználható anyagok (a forrás megjelölésével): http://152.66.80.46/smog1

Forrás:
Sajtóközlemény, Budapest Műszaki Egyetem. A Tudományos Újságírók Klubja jóvoltából.

Az Űrbatyu II fantasztikus utazása – 360 fokos VR videó a Rezsabek Nándor ScienceBlog és a Planetology.hu médiatámogatásával

Szerző: Rezsabek Nándor

Augusztus 20-án Várpalotáról 30 km-t meghaladó magasságba emelkedett, majd Tolna megyében, Dúzs község külterületén landolt a Bakonyi Csillagászati Egyesület magaslégköri ballonja. A Rezsabek Nándor ScienceBlog és a Planetology.hu médiatámogatásával zajló eseményről elkészült az a 12 perces videó, amely összefoglalja az Űrbatyu II útját a felengedéstől a leszállásig. Hazánkban ez az első 360 fokos 4K VR videó, ami a sztratoszférában, a világűr peremén készült. A kisfilmet VR szemüveggel a legjobb megtekinteni, így olyan élménnyel szolgál, mintha a ballonnal együtt repülnénk.

Bolygós rövidhírek: új ausztrál asztroblémet fedeztek fel

Szerző: Rezsabek Nándor

Ausztrál kutatók a közismert Wolfe Creek-kráter méretét ötszörösen meghaladó asztroblémet fedeztek fel Nyugat-Ausztráliában. Az Ora Banda városától 10 km-rel délkeletre található objektum részletei a felszínen nem azonosíthatók – vizsgálata geofizikai és geológia módszerekkel lehetséges. Átmérője 5 km-es, és egy 100 m-es impaktor hozhatta létre. A Curtin University munkatársai korát 100 millió évre becsülik. Felfedezéséhez a becsapódás lökéshullámát „magukba záró” ún. nyomáskúpos kőzetek (shatter cone) adták a megfejtési kulcsot.

A Wolfe Creek kráter Ausztráliában. Fotó: Wikipedia

Forrás: ABC.net

Hell Miksa

Szerző: Csaba György Gábor

Hell (eredeti nevén Höll) Miksa 1720. május 15-én született Selmecbányán. Apja bányamérnök volt, fontos találmányokkal segítette a bánya fejlődését. Miksa (talán) 22 testvére közt is volt két kitűnő bányászati szakember. A technika története mindhármukat számon tartja.

Miksa 1738-ban belépett a jezsuita rendbe. A rendi képzés idején latinra fordított s kibővítve kiadott egy olasz matematikai munkát; teológusi évei alatt pedig társai használatára egy történeti kisenciklopédia-félét írt (Adiumentum memoriae manuale chronologico-genealogico-historicum), amely különböző országokban többször is megjelent. 1751-ben szentelték pappá, s Besztercebányára helyezték. Innen irányította a nagyszombati, majd kolozsvári tanárként az ottani csillagda építését. Később több csillagda, így pl. az egri, a budai stb. létrehozásában is részt vett. Ő tervezte az egri líceum csillagász-tornyában ma is működő idegenforgalmi látványosságot, a periszkópot; ő gondoskodott az egri csillagda részére szükséges műszerek, könyvek beszerzéséről, szakemberek képzéséről is.

A már ismert nevű jezsuitára az említett „kisenciklopédia” felhívta az uralkodónő figyelmét. Mária Terézia 1755-ben kinevezte udvari csillagásznak, s ettől kezdve Hell Bécsben dolgozott. Sok feladatát (csillagászati észlelések, tanítás, a felszerelés karbantartása és fejlesztése, előadások és bemutatások tartása a nagyközönségnek stb.), köztük a nemzetközi hírnévnek örvendő csillagászati évkönyv (Ephemerides astronomicae ad meridianum Vindoboniensem) szerkesztését és kiadását élete végéig mindig nagyon pontosan és lelkiismeretesen végezte. Több, elsősorban matematikai, fizikai és csillagászati tárgyú könyvet is kiadott. Érdekes köztük például a „Dissertetio de satellite Veneris…” (azaz Értekezés a Vénusz holdjáról…) c., 1765-ben megjelent könyvecske, melyben leírja, hogy sok csillagász vélte felfedezni a Vénusz holdját – pedig ilyen hold nem létezik, az összes felsorolt észlelés optikai csalódás. Sőt az említett észlelések leírásából azt is meghatározta, milyen műszert használtak az észlelők, s hogyan jöttek létre bennük a tükröződések, melyek a csillagászokat félrevezették.

Nevét 1760-ban változtatta Hell-re, nyilván a Höll – Hölle, azaz ’pokol’ asszociáció miatt. Erről szól egy rendtársa, Paintner epigrammája, mely magyar fordításban kb. így hangzik:

Höll volt rég, de midőn Bécsből észlelte az égbolt

            csillagait, méltán lett ragyogóbb neve Hell.

Így föld mélyéből, éjszínü sötét üregekből

            nemzetsége nevét égbe ragadta fel ő.

Legfontosabb és legismertebb eredménye a napparallaxis meghatározása volt – ami azonban inkább csak vitákat és kellemetlenségeket hozott számára, mintsem elismerést.

Mint Halley korábban megmutatta: ha a Földnek legalább két helyéről pontosan észlelik a Vénusz Nap előtti átvonulását, az eredményekből kiszámítható a Nap parallaxisa (a szög, melyben a Nap középpontjából a Föld sugara látszanék), azaz lényegében a Nap-Föld távolság. 1761 június 6.-án ezért sok csillagász figyelte a Vénusz-átvonulást. Köztük volt Bécsben Hell is, aki 1764-ben az Ephemerides Astronomicae-ben részletesen beszámolt tapasztalatairól. Eszerint a megfigyelést két jelenség is megzavarta, bizonytalanná téve az érintkezés pillanatát. Egyrészt a Nap elé lépő Vénusz sötét korongját fényes kör vette körül, a Vénusz légkörének fénytörése (tehát bebizonyosodott, hogy a bolygónak van légköre). A másik jelenség még váratlanabb volt: amikor a Nap és a Vénusz korongja belülről csaknem érinti egymást, köztük sötét folt, az ún. fekete csepp jelenik meg.

A mérést nagy pontossággal kellett volna végrehajtani, de az eredmények csalódást keltettek. Ezért az 1769. június 3.-i következő átvonulás megfigyelését még nagyobb gonddal és körültekintéssel igyekeztek megszervezni. Bécsben, Hell munkahelyén ez az átvonulás nem volt látható, az udvari csillagász tehát lemondott a jelenség megfigyeléséről. Azt tervezte, hogy a számításokat elvégzi majd a mások által mért adatokból. 1767-ben azonban VII. Keresztély dán király meghívta Hellt, utazzék Vardö szigetére, s onnan figyelje meg az átvonulást. Vardö több szempontból is kiváló megfigyelőhelynek ígérkezett: ott május végétől augusztusig a Nap sosem nyugszik le, tehát a jelenség idején sem; másrészt magasan északon fekszik, ami a parallaxis-mérés szempontjából különösképpen előnyös. Igaz, a hely megközelítése nem volt sem könnyű, sem veszélytelen; a vidék gyéren lakott, zord, időjárása sem valami kedvező. Hell már ötvenedik évében járt, mégis vállalta a kalandosnak ígérkező expedíciót, természetesen azzal a feltétellel, ha mind uralkodója, mind rendi elöljárói engedélyezik utazását. Az engedélyeket megkapta; a csillagászt és útitársát Mária Terézia is fogadta, útjuk iránt szeretettel érdeklődött, s azt bőkezűen támogatta. Hell rendtársával, Sajnovics Jánossal 1768. április 28-án indult útnak.

Számítania kellett rá, hogy a zord északi időjárás, a gyakran borult ég meghiúsítja az észlelést. Hogy a sok költség és fáradság kárba ne vesszen, Hell nagyszabású tudományos programot dolgozott ki és végzett is el, melyben többek között meteorológiai, földrajzi, geofizikai, botanikai, zoológiai és néprajzi megfigyelések is szerepeltek. Hogy csak egyetlen eredményét emeljük ki: Norvégia partjainak minden pontján, ahol kikötöttek, gondos csillagászati helymeghatározást végzett – ez volt a térség első precíz földrajzi felmérése. Ezt természetesen Vardöben is megtette, sőt elkészítette a sziget pontos térképét is. Közben kipróbálta a földrajzi szélesség (tkp. a sarkmagasság) mérésére feltalált igen fontos és pontos módszerét; ez ma Horrebow-Talcott eljárás néven ismeretes.

Az okkultáció megfigyelését körültekintően előkészítette társaival, Sajnoviccsal és egy Borgrewing nevű dánnal. A várva várt napon az ég felhős volt, de a jelenség kezdetére mégis kisütött a Nap. Miután a Vénusz kívülről érintette a Nap korongját (1. kontaktus), majd belülről is (2. kontaktus), ismét beborult az ég. Ez komoly aggodalmat keltett, mert Hell jól tudta, hogy e két kontaktus adatai a számításokhoz nem elegendők. A bolygó Nap előtti elhaladását, ami több órát vett igénybe, csillagászaink nem láthatták. Már remélni sem merték, de a Vénusz kilépése előtt ismét kiderült az ég, és a belső, majd a külső érintést (3. és 4. kontaktus) zavartalanul, a lehető legpontosabban sikerült megfigyelniök — mint később megtudták, Európában egyedül. Ezzel expedíciójuk fő célját elérték.

Ugyanekkor a Föld déli félgömbjén James Cook kapitány kutatóútja, amelyet részint épp a Vénusz-átvonulás megfigyelése céljára szerveztek (s amelynek során számos földrajzi fölfedezés született, így pl. Ausztrália, Új-Zéland és Tahiti fölfedezése), szintén sikerrel járt. Cook hajója, az Endeavour művészeket és tudósokat is szállított, köztük több csillagászt. A bolygóátvonulást a frissen fölfedezett Tahiti szigetén észlelték, és följegyzéseik szerint váratlanul érte őket a „fekete csepp” megjelenése. (A megfigyelés idején ott igen meleg volt, ami tovább nehezítette a mérést. A kutatók egészségét is megviselte, olyannyira, hogy az egyik csillagász, Green, belebetegedett és meghalt.) Ez a megfigyelés elengedhetetlenül szükséges volt a napparallaxis kiszámításához, hiszen ez csak úgy lehetséges, ha a Föld legalább két, lehetőleg távoli pontján sikerül adatokat gyűjteni.

Hell az expedícióról hazatérve és eredményeit a Cook-féle expedíció méréseivel egybevetve elvégezte a számításokat, és a napparallaxis értékére 8.70”-et kapott (mai ismereteink szerint kb. 8.80”). Ezt az 1770-ben megjelent könyvében (Observatio transitus Veneris ante discum Solis die 3. Junii anno 1769. Wardoehusii etc.) közölte, ahol a megfigyelés előzményeit, pontos leírását is megtaláljuk. A kötet megjelenése elég sok időbe telt, mert a tudósnak meg kellett várnia a Cook-féle eredményeket, majd elvégezve a számításokat, könyvét a dán király elé kellett terjesztenie jóváhagyás végett, s csak ezután nyomathatta ki. Sajnos az utazás teljes tudományos leírása, amit Expeditio litteraria címen tervezett, nem készült el. Megvan azonban a mű részletes vázlata; ezt olvasva csak sajnálhatjuk, hogy e nagyszerű terv, Hell sok más tervével együtt, a jezsuita rend feloszlatása miatt nem valósulhatott meg.

Az expedíció során Hellnek föltűnt, hogy a lappok beszéde, kiejtése hasonlít a magyarhoz. (Egy levelében így írt: …titok terhe alatt közlöm, hogy az egész északon egészen Ázsiáig elterjedt jeles lapp nemzetségnek fölfedeztük egy népét. Jó Isten, ki hitte volna, hogy mi ugyanazon ősatyától való testvéreket fogunk találni a lapp népben! Magyarok, testvéreink, a mi magyar nyelvünket beszélik, a mi magyar ruhánkat hordják, a mi régi magyar atyáink szokásai szerint élnek, egyszóval, testvéreink…) Ennek jelentőségét azonnal fölismerte, s fölkérte Sajnovicsot, kutassa tovább a dolgot. Sajnovics nekifogott, ám a munkát nehézsége miatt többször abbahagyta. Hell mindannyiszor segítette, buzdította társát, míg végre megszületett az összehasonlító nyelvészet egyik alapvető műve, a Demonstratio idioma Ungarorum et Lapponum idem esse. Maga Sajnovics írja, hogy a művet ugyan ő maga vetette papírra, de elkészülte voltaképpen Hell érdeme. A Demonstratio lényege a magyar és a lapp nyelv közeli rokonságának bizonyítása. Mint úttörő munka, nem mentes túlzásoktól, sőt tévedésektől sem, de értékét ez aligha csökkentheti.

A Vénusz-átvonulásról szóló könyv „késése” miatt Hellt sok támadás érte. Először a nagy francia csillagász, Lalande támadta meg, kétségbe vonva nemcsak eredményeit, hanem Hell tudományos tisztességét is. Ezt Hell az Ephemerides 1773-as kötetében visszautasította, mire Lalande elismerte, hogy tévedett. Sajnos ezzel nem volt vége a támadásoknak, amelyek Hell halála (1792) után lángoltak föl igazán. A bécsi csillagda későbbi igazgatója, Karl Littrow (aki – a budai csillagvizsgáló igazgatójaként szerzett tapasztalatai alapján némi joggal – nem kedvelte a magyarokat), kéziratban vizsgálta meg Hell írásait, és bizonygatta, hogy Hell csalt, a kézirat tele van vakarásokkal, javításokkal, és utólag, más színű tintával készült átírásokkal. Szerinte szerzőnk, miután megkapta a Cook-féle adatokat, eredményeit módosította, hogy magát a valóságosnál sokkal jobb észlelő színében tüntesse föl. Littrownak sokan hittek; Hellt tudományos csalás elkövetőjének hitték, s a napparallaxis értékére Enckének Hell eredményénél sokkal pontatlanabb adatait fogadták el.

Csaknem 100 év telt el, míg egy elfogulatlan kutató, az amerikai Newcomb, utánanézett, mi igaz Littrow vádjaiból. 1883-ban Bécsben járva (egy új műszert akart kipróbálni, de hetekig borult volt az idő) unalmában megnézte Hell kéziratát, melyről ő is úgy vélekedett, mint Littrow korábban. Ám az alapos vizsgálat meggyőzte, hogy a naplóban látható korrekciók (vakarás egyáltalán nincs!) egyszerű tollhibák javításai, amelyek hol erősebben, hol gyengébben fogó tollal, de többnyire közvetlenül a hiba elkövetése után történtek. A tinta sem más színű, hanem — Littrow volt színtévesztő! Newcomb igazolta, hogy a Hellre szórt vádak alaptalanok voltak.

A jezsuita rend 1773-as eltörlésével megszűnt a rend által Hellnek nyújtott támogatás. Ekkor Hell a világi papság kötelékébe lépett, reménykedve rendje újjáéledésében – amit azonban nem érhetett meg. Ha nem is zavartalanul, de folytatta sokoldalú tudományos munkáját többek között néprajz, földrajz, történelem, fizika, teológia tárgyköreiben, természetesen a csillagászat mellett. 1774-ben a naptár ügyében nyújtott be egy tervezetet a bécsi udvarhoz; ennek eredményeképpen kiadhatott egy 1776-os csillagászati naptárt.

Élete vége felé Hell sokat panaszkodott arról, hogy egyes „bécsi firkászok” támadják, rágalmazzák, úgyhogy már alig tud dolgozni és aludni. E „firkászok” alatt Born Ignác lovag értendő, aki valóban goromba támadásokat intézett a csillagász ellen. Pedig amúgy érdemdús férfiú volt: neve mineralógusként vált ismertté – mellesleg Mozart „Varázsfuvolá”-jában róla mintázták Sarastro alakját. De miért támadta Hellt? Csak azért, mert fiatal korában maga is jezsuita volt, ám a rendből kilépet, s attól fogva minden alkalmat megragadott, hogy gyalázza azt. Hell megtámadása ennek csak egyik részlete volt.

E támadások, valamint az egymagában, segítő nélkül végzett, mégis egyre szaporodó munka aláásta Hell egyébként sem szilárd egészségét. 1792 tavaszán meghűlt, s lázas, hurutos betegségéből már sohasem gyógyult fel. 1792 április 18-án, 72 éves korában hunyt el.

Még életében több külföldi akadémia (többek között a párizsi) választotta tagjának. Újabban egy kisbolygót (3727 Maxhell), valamint a Holdon egy krátert neveztek el róla.

Vénusz-átvonulást hazánkból legutóbb 2004. június 8.-án, majd 2012 június 6.-án láthattunk (az előbbit teljesen, az utóbbinak csak az elejét). Az egész jelenség tőlünk legközelebb 2247-ben lesz megfigyelhető.

A magyarországi porviharok mikéntje és mibenléte

Szerző: Balázs Gábor

Közeledik a nyár és vele együtt a meleg, aszályos időszak is, mellyel párhuzamosan az országban megnövekedtek a porvihar és a porördög észlelések egyaránt. Növekvő gyakoriságuk a klímaváltozással kapcsolatba hozható, melynek következményeként a kialakulásukhoz kedvező feltételek egyre hosszabb időszakban adottak.

Aszály 2020. április 25-én. Ezen a napon az országban
több helyen is porviharok alakultak ki
(https://www.met.hu/idojaras/agrometeorologia/aszalyinfo/)

Jöhet a kérdés, hogy egy, a sivatagokra jellemző jelenség hogyan képződik hazánkban. Az aszályos időszakban kiszáradt magyarországi régiókban, valamint mezőgazdasági munkákat követően fellazult talajban lévő apróbb homok- és porszemcséket a szél könnyedén felkapja, majd elszállítja. Ezt a szállítást eolikus szállításnak, amit szállít, pedig eolikus homoknak nevezik. Ennek velejárója az eolikus erózió is, melyet kettő, egymáshoz szorosan kapcsolódó típusra lehet bontani. Az egyik defláció, ami a fellazult talajszemcsék elfújásását jelenti és olyan területeken jellemző, ahol gyér a növényzet és a fellazult talajszemcsék elég kisméretűek ahhoz, hogy a szél elszállítsa. Hosszútávon ez a talaj felső, termékeny rétegének eltűnését okozza. A szállítás módja a szél sebességétől függ. Alacsony szélsebesség esetén görgetéssel, közepes erősségnél ugráltatva (szaltáció), erős széllökések (60-70 km/h <) esetében lebegtetéssel szállítódik el. Ez okozza a másik típust, a korráziót, ami alatt az előbbiekben említett szél által szállított szemcsék csiszoló, súroló hatása és felszínformálása értendő, de ez országunk esetében nem jelentős mértékű. Ami egyszer felszáll, az később leülepszik. Eolikus homok felhalmozódása olyan területeken jellemző, ahonnan a szél nem szállítja tovább, vagy a folyók nem hordják el. Nyomán futóhomok és a finom porból lösz képződik, ami a Kárpát-medencében leginkább a Pleisztocén időszakban, a Würm-glaciális során volt jelentős. Ilyen területeket Magyarországon leginkább az Alföldön találhatunk, például a Duna-Tisza-közén elhelyezkedő, az ENSZ Élelmezésügyi és Mezőgazdasági Szervezete (FAO) által félsivatagi környezetbe sorolt Duna-Tisza közi homokhátság, a nyírségi parabolabuckák, de a Dunántúli-dombság is ezek a területek közé tartozik. Löszképződményt a Balaton keleti részén is találhatunk magaspartok formájában.

Löszfal
(https://mapio.net/pic/p-7663381/)
Homokhátság
(https://sokszinuvidek.24.hu/eletmod/2019/07/25/homokhatsag-felsivatag-veszely-szarazsag/)
Parabolabucka
(https://slideplayer.hu/slide/3269231/11/images/18/)
Magyarország földtani térképe
(https://slideplayer.hu/slide/13035182/)

Visszatérve a porviharokhoz: ezek a jelenségek Magyarországon leginkább erőteljesebb hidegfrontokhoz kapcsolódnak. Frontok ott alakulnak ki, ahol az érintkező légtömegek között nagymértékű a hőmérséklet-különbség. Egy ilyen jellegű front áthaladása esetén hirtelen meredek szögben érkező hideg levegő gyors feláramlásra készteti a meleg levegőt. Ezekre a frontokra jellemző a hirtelen heves esőzés, mely a frontvonal (ahol a légtömegek találkoznak) mögött haladó kb. 10 kilométer széles csapadékzónában jelentkezik, viszont ennek áthaladása után hideg, de derült idő valószínűsíthető, jó légköri nyugodtsággal. Az ilyen frontok áthaladása előtt és a frontvonal áthaladásánál tapasztalhatunk igen erőteljes, viharos, 90-110 km/h-s széllökéseket, melyek felkapják a homokszemcséket és nagy mennyiségben, lebegtetve elszállítják.

Hidegfront érkezése előtt látható peremfelhő Schmall Rafael felvételén
2019. július 27-én Őrimagyarósdról
Kaposfőn átvonuló porvihar 2019. október 2-án Schmall Rafael felvételein

Ezek a jelenségek a közlekedés szempontjából negatív tényezők, mivel egy ilyen porfelhő belsejében a látótávolság néhány méterre csökken, ezáltal növelve a balesetek kockázatát. Egészségügyi hatásai leginkább a légzőrendszert érintik. Belélegezve a nyálkahártyát irritálja, tüdőbe kerülve pedig köhögést vált ki.

Források:
https://www.origo.hu/egeszseg/20110131-igy-hat-a-szervezetre-a-szallo-por.html
https://www.met.hu/idojaras/agrometeorologia/aszalyinfo/
https://slideplayer.hu/slide/13035182/
https://www.arcanum.hu/hu/online-kiadvanyok/pannon-pannon-enciklopedia-1/magyarorszag-foldje-1D58/magyarorszag-tajai-2807/a-dunai-alfold-loki-jozsef-2A33/dunatisza-kozi-hatsag-kiskunsag-2A3C/
http://tortenelemszak.uni-miskolc.hu/Hallgatoi_anyagok/BA_regeszet/geomorf_ea/losz.pdf
https://sokszinuvidek.24.hu/eletmod/2019/07/25/homokhatsag-felsivatag-veszely-szarazsag/
https://www.idokep.hu/hirkeres/porvihar

Napfoltok és a búza ára

avagy ki fedezte fel Amerikát?


Szerző: Balogh Gábor


Sir William Herschel

1801-ben Sir William Herschel, a német származású angol csillagász meglepő hipotézist tett közzé, miszerint összefüggés lehet a napfoltok száma és a búza ára között. Herschel közel negyven évig (1779–1818) tanulmányozta a napfoltokat. Adatait összevetette Adam Smith: „A nemzetek gazdagsága” (1776) című művének a búza árára vonatkozó adataival is. Mivelhogy megfigyeléseinek legnagyobb része az úgynevezett Dalton-minimumban (1790-1830) történtek meg, amikor kevés napfolt volt, nem vehette észre a naptevékenység 11 éves periodicitását.

A jelenség gazdaságra gyakorolt hatása rendkívül fontos, ezért nem csak csillagászok, hanem gazdasági elemzők is nagyon komoly kutatásokat végeznek annak érdekében, hogy összefüggést találjanak a csillagászati események és a gazdaság között.

Hogyan is befolyásolhatják ezek a csillagászati jelenségek Földünk időjárását, vagy akár éghajlatát? Az első ilyen tudományos megerősítés 1856-ban született, mikor Edward Sabine bebizonyította a napfoltok és a mágneses viharok közötti összefüggést. Ezzel szemben, a napfoltok és az időjárás közötti közvetlen kapcsolatot sokkal nehezebb detektálni, hiszen ezt számtalan dolog befolyásolja. A napfoltok és a búza ára közötti összefüggést még nehezebb megállapítani, hiszen a gazdaság nem egy tiszta fizikai rendszer, ezt számtalan dolog befolyásolja, mint például a politika, tőzsdei spekuláció, vagy akár a tömegpszichológia is. A globalizáció is például egyfajta „védőszelepként” működik az árak esetében.

Herschel ötlete, úgy tűnik, néha „működik”, néha nem, napjainkig sok vita folyik hipotéziséről. Ami érdekes, az a rész, amikor „működik”.

A búza-dollár index alakulása és a napfoltok.
Forrás: Tom McClellan: Sunspots – The Real Cause of Higher Grain Prices

Hasonló összefüggést láthatunk a szarvasmarha-árak és a napfoltok között.

Szarvasmarha-árak és a napfoltok.
Forrás: Sergey Tarassov: Sunspot activity and stock market

Természetesen nagyon sok tényező (gazdasági, technológiai, mezőgazdasági) befolyásolja ezt a korrelációt. Vegyük például a kukorica árát, itt csak 1950-ig láthatjuk a fenti összefüggést, valószínűleg az 1960-as „Zöld Forradalom”-nak köszönhető új technológiáknak. 1950 után ez az összefüggés eltűnik.

Kukorica-árak és a napfoltok. Forrás: Sergey Tarassov: Sunspot activity and stock market

Matematikai számításokkal is tesztelték azt a hipotézist (Burakov), és rövid- és hosszútávú összefüggést egyaránt találtak a napfoltok, a búza terméshozama, ára és a nem teljesítő banki hitelek (non-performing loan, NPL) között.

A napfoltok, ezek az időszakos jelenségek a Nap „felszínén”, fotoszféráján, a többi területhez képest sötét foltoknak látszanak. Valójában egyáltalán nem sötétek, hanem csak a mintegy 5,800°K hőmérsékletű környezetüknél kétezer fokkal hidegebbek, itt negyedannyi a sugárzás intenzitása. A napfoltok egy hasonlattal élve tulajdonképpen hűvös, mágneses dugók egy gödörben, melyek meggátolják a konvektív áramlást.

Napfoltok, forrás: NASA’s SDO
A napfoltok száma és a mért kozmikus sugárzás fordított arányossága.University of Delaware

De hogyan befolyásolhatják a napfoltok a Földi időjárást, pláne a búza árát? Napfoltmaximum idején, tehát amikor több napfoltot látunk a Napon, aktívabb a Nap, kisebb a kozmikus sugárzás intenzitása, napfolt-minimumok idején pedig nagyobb. A kozmikus sugárzás – mely nem is annyira sugárzás, hanem elsősorban nagyenergiájú részecskékből áll – ionizálja a Földi légkört, és ezzel elősegíti a felhő- és csapadékképződést, befolyásolja az időjárást. Különböző földrajzi területeken azonban más lesz a jelenség hatása. Másképpen hat a Föld egészére, globálisan, és más hatásokkal találkozhatunk az egyes földrajzi területeken is. Természetesen, amint már megjegyeztük, rengeteg dolog befolyásolja a gazdaságot, a tőzsdét is.

A Nap azonban nagyobb dolgokba is beleszólhat, és itt talán egyértelműbb az összefüggés.

Amerika felfedezése egy másik példája a Napnak a klímára való hatására. Arra a kérdésre, hogy ki fedezte fel Amerikát, három jó válasz is van. Mindhárom esetben a Nap szólt bele a felfedezésbe, a vikingek esetében pedig a feledésbe merülésébe is. De ki fedezte fel Amerikát? Először, tulajdonképpen, maguk az indiánok. Egyelőre nevezzük őket szibériaiaknak, akik mintegy 15-18.000 évvel ezelőtt, száraz lábbal kelhettek át a Bering-szoroson, követve a vándorló mamutokat. A tengerek szintje jóval alacsonyabb volt, mint ma, ezért ahol ma tenger van, ott egy hatalmas földnyelv kötötte össze Szibériát és Észak-Amerikát. Később, a felmelegedés hatására a jég olvadni kezdett, a tengerek szintje emelkedett, elöntve ezzel Beringiát, létrehozva a Bering-szorost. Az Amerikában ideiglenesen elszigetelődött populációkból alakultak ki az indiánok, helyesebb elnevezéssel Amerika őslakói.

Leif Erikson (Leifr Eiríksson)

Másodjára a vikingek fedezték fel Amerikát, 1001-ben. Ez az úgynevezett „Középkori Meleg Időszak” (Medieval Warm Period) ideje volt 900–1300 között. A hőmérséklet magasabb volt, mint ma, különösen az Észak-atlanti vidékeken. Az akkori átlaghőmérséklet meghaladta a római kori időszakot is. Nőttek a terméshozamok, a népesség rövid idő alatt megduplázódott. Emiatt is vált szükségessé a vikingek számára Grönland gyarmatosítása. Grönland „Zöldföldet” jelent, ez is jelzi, hogy ez a hatalmas, ma jeges sziget déli részét akkor erdők borították, a partok dúskáltak a halakban. Vörös Erik vezetésével a telepesek gabonát termesztettek, háziállatokat tartottak, csaknem 620 ilyen farmot tártak fel Grönlandon, nyolc-kilencezer embernek adva megélhetést.

Maga az amerikai kontinens felfedezése sem váratott sokáig magára. Grönland felfedezése után tovább hajóztak nyugat felé, újabb területeket fedezve fel. Bjarni Herjólfsson hajója 985-ben elszakadt társaitól, és három nap hajózás után megpillantotta az amerikai szárazföldet. Tizenöt évvel később Leif Erikson már egy kisebb telepet is létrehozott a szárazföldön, általuk Vinlandnak elnevezett területen. (Vinland vagy a viking ’vínber’ szóból ered, legjobban ’borbogyó’-nak fordíthatnánk – ez jelenthetett szőlőt is, ribizlit is, vagy a vin szóból, ami viszont mezőt, farmot jelent. Ezt sajnos ma már nem tudhatjuk, mert a középkori viking rúnaírás nem tett különbséget a hosszú és a rövid ’i’ között.) 1960-ban Új-Fundland északi részén, L’Anse aux Meadows öbölben egy viking település maradványait tárták fel, melyet a „Vörös Erik történetében” szereplő Straumfjörð-del azonosítanak.

Jól látható a térképen, hogy a vikingek rövid, part menti hajózással tudtak eljutni Amerikába.
A szerző saját képe.
Viking ház rekonstrukciója. L’Anse aux Meadows National Historic Site,
http://whc.unesco.org/en/list/4

Az idilli helyzet 400 éven át tartott. Az időjárás 1300 után kezdett megváltozni, egyre hidegebb lett, lassan lehetetlenné vált a földművelés. Egy Grönlandon járt püspök 1350-ben már elhagyatott településeket talált itt, a korábban megművelt földek helyett lényegében permafroszt, örökké fagyott talaj fogadta. 1378-ban az Egyház el is hagyta Grönlandot, mikor a part menti hajózás lehetetlenné vált a jég miatt. 1408-ből még fennmaradt egy házassági bejegyzés, de az 1721-es expedíciót vezető Hans Egede már nem talált itt európaiakat, a kontinensen pedig valószínűleg még hamarabb pecsételődött meg a települések sorsa.

Hvalsey templom romjai Grönlandon, Wikipédia
A part menti szakaszok befagytak, lehetetlenné téve a hajózást.
A szerző saját képe.

Véget ért a „Középkori Meleg Időszak” (Medieval Warm Period).

Mielőtt rátérnénk a következő felfedezőre, Kolumbuszra, nézzük meg, hogy mi okozhatta a következő lehűlési időszakokat? Elfogadott elmélet, hogy a nagyobb ciklusoknak, a jégkorszakoknak főként a Milanković-ciklus az oka. Az utóbbi csaknem egymillió évben az eljegesedések 100.000 éves ciklusokban követték egymást, ami tökéletesen megfelel a Milanković-ciklus elméletének, mely egyszerre veszi figyelembe a változó Föld-Nap távolságot, a Földpálya alakját (excentricitását), a precessziót (a földtengely mozgását), az apszidiális precessziót, a forgástengely szögét, és a pályahajlást (inklináció). Természetesen más okai is vannak, különösen nagy geológiai léptékekben, mint például a légkör összetétele, a tektonikai lemezek relatív helyzete, óceánáramlatok, vulkáni tevékenységek, stb.

A Kis Jégkorszakot például, melynek jó részét a Maunder-minimum uralta, az „elhúzódó napfolt-minimum kora”, a napfoltok szélsőségesen kevés száma jellemezte. 1645 és 1715 között a napfolttevékenység szünetelt, illetve szélsőségesen ritka volt.

Napfoltok száma és a hőmérséklet összehasonlítása közép-Angliában
IPCC, Michael Lockwood

De mi a helyzet azokkal az időszakokkal, mikor még nem történt rendszeres napfolt-megfigyelés, és így nem állnak rendelkezésünkre ilyen adatok? Szerencsére a szén 14-es izotópja segítségünkre lehet ebben. Ennek az izotópnak (14C) a képződése a nap aktivitásának függvénye. A 14C a felső atmoszférában képződik, amikor a légköri nitrogénből (14N) képződik a kozmikus sugárzás hatására. Ha a Nap aktívabb, kevesebb kozmikus sugárzás éri Földünket. Ez a 14C, amelyet a sarki jégben vagy akár fák évgyűrűiben találhatunk, egyedülálló lehetőséget kínál a kozmikus sugárzás és a naptevékenység sok évezredes hatásainak a rekonstruálására. Segítségével felbecsülhetjük az adott időszak napfolttevékenységét, és ez által az adott klímát.

A kozmikus sugárzás és a hőmérséklet alakulása. Steinhilber et al

A kozmikus sugárzás intenzitásának csúcsai tökéletesen egybeesnek az adott hidegebb időszakokkal, (O:Oort-, W:Wolf-, S:Spörer-, M:Maunder-, D:Dalton-, G:Gleissberg-minimumok) .

Amerika viking felfedezése felejtésbe merült – Európának még nem volt rá szüksége.

Kolumbusz Kristóf (Cristoforo Colombo)

Kolumbusz családjának – és sok más polgárnak a sorsa azonban egyre nehezebb lett Oszmán Birodalom terjeszkedésével egyidejűleg, ugyanis ez a keleti piacok, kereskedelmi utak megszűnésével járt. A fiatal Kolumbusznak hamar szakítania is kellett a posztókereskedelemmel, és tengerésznek állt. Többek között, 1477-ben eljutott Izlandra, és ez meghatározó fordulat volt életében. Beszélt izlandi tengerészekkel, akiknél a korábbi nyugati utak még nem merültek feledésbe, ahol nem is olyan távoli nagyapáik jártak. Motoszkálni kezdett egy gondolat a fejében.

A tengerészek tudták, hogy a Föld gömbölyű, hiszen a távolodó hajónak először az alja tűnik el. A szerző saját képe

Akkoriban már közismert volt, hogy a Föld gömbölyű, viták csak arról szóltak, hogy mekkora is ez a gömb. Ötlete az volt, hogy nyugat felé hajózva is el lehet jutni a gazdag Indiába. Tudta, hogy ilyen nagyszabású tervhez támogatókra lesz szüksége, néhány ével belül neki is látott támogatást szerezni. Mivel akkoriban Portugáliában élt, először a portugál királyt kereste meg tervével. Az addig jelentéktelen Portugália akkor kezdett tengeri hatalommá válni. II. János portugál király azonban nem látván reálisnak tervét, visszautasította őt. A portugálok inkább Afrikát megkerülve akartak eljutni Indiába.

Ezután a Spanyolországot egyesítő katolikus uralkodókhoz, Aragóniai Ferdinándhoz és Kasztíliai Izabellához fordult. A zűrös politikai helyzet miatt az uralkodók azonban sokáig váratták, csak 1492 januárjában született döntés, hogy támogatják Kolumbusz útját.

Kolombusz három hajójának rekontrukciója, a Santa María, a Pinta és a Niña.
Forrás: Smithsonian Magazine

1492. augusztus 3-án vágott neki az óceánnak három, mai szemmel ijesztően kicsi hajóval. A háromárbocos Santa María karakkal és két kis karavellával, a Pinta-val és a Niña-val. Technikai problémák, hajósérülések miatt a Kanári szigetekről csak szeptember elején indulhattak tovább. Maga a hajóút sem volt konfliktusoktól mentes, Kolumbusz négy hétre becsülte az utat, de ez idő lejártával még mindig a nyílt óceánon voltak. Miután csaknem lázadás tört ki, kozmetikázni kezdte a hajónaplót, kevesebb megtett utat jegyzett fel a hajónaplóban.

Kolumbusz akaratlanul a leghosszabb utat választotta Amerika felé.
A szerző saját képe

1492. október 12-én érték el Guanahani szigetét, melyet San Salvadornak, Szent Megmentőnek nevezett el. Az itt látott taínókat indiánoknak nevezte, mert úgy vélte, hogy Indiába jutott. Tovább hajózott Kubába – melyet Kínának hitt, majd Hispaniolába, és sok más szigetet is felfedezett. 1493. március 15-én ért haza a spanyol Palos kikötőjébe nemesfémmel, fűszerekkel, új gyümölcsökkel, kukoricával, dohánnyal és burgonyával – és az Indiába vezető út felfedezésének dicsőségével. Visszatérte után hősként fogadták, majd újabb utakkal bízták meg. Kolumbusz négy útja után sem tudta, hogy (újra-)felfedezte Amerikát, de ezzel megalapozta a Spanyol világbirodalom születését.

A sors fintora, hogy a reconquista utáni Spanyolország szinte csak nemesekből és nincstelenekből álló társadalma nem volt képes az Újvilág kincseit befogadni, ezek nagyon hamar elfolytak az országból. Spanyolországot a fél világ meghódítása és a fantasztikus kincsek özöne is csak még szegényebbé tette, hiszen nem volt polgári réteg, kereskedők, szakemberek, ipar, bankrendszer. A beáramló érték tovább folyt külföldi országokba, főleg a Németalföldre.



Források:

Burakov, D. (2017) “Do Sunspots Matter for Cycles in Agricultural Lending: a VEC Approach to Russian Wheat Market”, AGRIS on-line Papers in Economics and Informatics, Vol. 9, No. 1, pp. 17 – 31. ISSN 1804-1930. DOI 10.7160/aol.2017.090102. DOI: 10.7160/aol.2017.090102

Easterbrook, D.J.: Evidence-Based Climate Science, ISBN978-0-12-804588-6 

Fizikai Szemle, Kozmikus sugárzás és csillagászat. 1999/1.

Grove, Jean M.; Switsur, Roy (1994): “Glacial geological evidence for the medieval warm period”

Herrera et al.: Reconstruction and prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century. New Astronomy Volume 34, January 2015, Pages 221-233

LiveScience: Humans Crossed the Bering Land Bridge to People the Americas,
https://www.livescience.com/64786-beringia-map-during-ice-age.html

Mann, M. E.; Zhang, Z.; Rutherford, S.; et al. (2009): “Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly” (http://www.geo.umass.edu/climate/papers2/Mann2009.pdf)

McClellan, Tom: Sunspots – The Real Cause of Higher Grain Prices
(http://time-price-research-astrofin.blogspot.com/2017/02/sunspots-real-cause-of-higher-grain.html)


Meadows, A. J. (1975), A hundred years of controversy over sunspots and weather, Nature, 256, 95–97.

NASA’s SDO Observes Largest Sunspot of the Solar Cycle: https://www.nasa.gov/content/goddard/sdo-observes-largest-sunspot-of-the-solar-cycle/

National Geographic, Ancient DNA reveals complex migrations of the first Americans.
https://www.nationalgeographic.com/science/2018/11/ancient-dna-reveals-complex-migrations-first-americans/

Philip Ball: Sun set food prices in the Middle Ages, Nature. (https://www.nature.com/articles/news031215-12)

Potgeiter, M. (2013). “Solar Modulation of Cosmic Rays”. Living Reviews in Solar Physics. https://ui.adsabs.harvard.edu/abs/2013LRSP…10….3P/abstract

Pustilnik, L.A., G. Yom Din: Space Climate Manifestation in Earth Prices – from Medieval England Up to Modern Usa
(https://arxiv.org/abs/astro-ph/0411165)

Science Direct: Medieval Warm Period
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/medieval-warm-period

Solar cycle variations and cosmic rays. Journal of Atmospheric and Solar-Terrestrial Physics, Volume 70, Issues 2–4, February 2008, Pages 207-218. https://www.sciencedirect.com/science/article/abs/pii/S1364682607002726

SolarStorms, Cosmic Rays Received,
http://www.solarstorms.org/Scosmic.html

Steinhilber et al.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings, https://www.pnas.org/content/109/16/5967

Tarassov, Sergey: Sunspot activity and stock market. http://www.timingsolution.com/TS/Articles/sunspot/

University of Delaware, Cosmic Rays and the Solar Cycle,
http://neutronm.bartol.udel.edu/catch/cr3.html

U.S. Geological Survey, The Sun and Climate. U.S. Geological Survey Fact Sheet 0095-00
https://pubs.usgs.gov/fs/fs-0095-00/

A Ramadán csillagászati érdekessége

Szerző: Szoboszlai Endre

Ismerjük-e kellően más vallások ünnepeit? Vagy kellő tisztelettel vagyunk-e más kultúrák és vallások iránt? Sajnos el kell ismernünk, hogy bizony nem alaposan ismerjük más vallások ünnepeit, ezért is érdemes erről beszélni…

Az iszlámhívők, vagyis a muszlimok, vallási szokásai közül talán leginkább a böjti hónapot ismerheti a nem muszlim hívő ember. A Hidzsra naptár 9. hónapja ramadán hó, ez a böjti hónap. Idén, 2020-ban, a Gergely-naptárunk szerint április 24-én, pénteken, kezdődik a ramadán. Azért, mert előző napon, vagyis április 23-án lesz újhold, és az újhold utáni napon tűnik fel a pici holdsarló, amikor is elkezdődhet a böjt. A böjti hónap vége majd a következő újhold utáni napon lesz. Mivel május 22-én, pénteken lesz ismét újhold, így a ramadán végének a napja majd akkor várható, amikor ismételten megpillantható lesz (várhatóan május 23-án) a kis holdsarló.

A 2020. évben egy érdekesség is lesz, ugyanis míg a zsidó vallásúaknak szombat, a keresztényeknek vasárnap a heti pihenő-ünnepnapja, addig a muszlimoknak a péntek az. Idén naptári érdekesség, hogy ramadán első napja is péntek lesz, és az utolsó teljes böjti nap is péntekre esik. Ez ritkán fordul elő.

Az iszlámhívők, vagyis a muszlimok számára a Hidzsra naptár 9. hónapja a ramadán, vagyis a böjti hónap. A naptár elkészítése mindig a csillagászok feladata volt, az ma is, ismerkedjünk meg most ennek érdekességeivel.

Hány éves egy muszlim?

A Hidzsra-naptár (tévesen hívják egyesek „Mohamedán” naptárnak!), a Hold Föld körüli keringését használja fel az idő mérésére. Ez rövidebb a mi általunk használt napévnél, vagyis, attól az időtartamtól, amennyi idő alatt a Föld megkerüli csillagunkat, a Napot. Ezért van az, hogy egy Hidzsra év kb. 10–11 nappal rövidebb a napévnél. Ebből adódik egy furcsa helyzet: ha egy muszlimtól megkérdezzük, hogy hány éves, tisztázni kell, hogy melyik naptár szerint adja meg a választ, mert 33 napév 34 Hidzsra évnek felel meg!

(Például: a 2020. év áprilisában a Hidzsra naptár az 1441. évet írja. Az 1442. év majd 2020. augusztus 20-án kezdődik!)

De mi is a ramadán?  Az iszlám vallás, öt alapvető törvényt ír elő, melyek közül az egyik, a nagy megpróbáltatást jelentő szabály a ramadán hónapi böjtölés megtartása. A Hidzsra naptárban a hónap elején az újhold utáni naptól, a következő újholdig tart egy holdhónap. A ramadán a Hidzsra-naptár 9. hónapja, és ebben a hónapban napkeltétől napnyugtáig tilos enni, inni, dohányozni, és szexuális életet élni az igazhívő muszlimnak. Ezt a hónapot azért ünneplik meg, mert a hagyomány szerint ekkor érkezett Allahtól – Gábriel arkangyal segítségével Mohamed prófétához – az iszlám szent könyve, a Korán. A ramadán havi böjt alól mentesül az, aki utazik, beteg vagy az egészségét veszélyeztetné a szigorú megpróbáltatás.

Érezzék a gazdagok is az éhezést

Amennyiben bizonyos ok miatt a böjt nem tartható meg, az elvesztett napokat pótolni kell,tehát a hónap elmúltával, annyival több napig kell böjtölni, ahány napot elvesztett a hívő. A böjt megváltható szegény emberek étkeztetésével. A böjtnek két lényeges célja van: az egyik cél, hogy a vallásgyakorló bizonyítsa Allah előtt, hogy a lelke erősebb a test vágyánál és felül tud kerekedni a test földi megpróbáltatásain, tehát például le tudja győzni az éhségérzetét,amíg a Nap le nem nyugszik. A másik célja, hogy a böjt alatt egy teljes hónapig a jómódban élők is átérezzék az éhezés gyötrelmeit és így a szegény emberek problémáit! No, ezt megszívlelhetné sok nem muszlim gazdagember is…

A böjt rendkívüli megpróbáltatás akkor, amikor a ramadán a nyári hónapokra esik, hiszen ilyenkor nagyon meleg van, valamint a napkelte és a napnyugta közötti időtartam hosszabb. Ilyen nyári időszakra – a Gergely-naptár szerint – majd jó húsz év eltelte után, a 2041. és 2049. közötti években esik (Hidzsra naptár szerint az 1463-1472. közötti évek) majd a ramadán.

A ramadán végén úgymond „lelövik” a böjtöt, ez akkor következik be, amikor vége van a holdhónapnak, majd a fiatal, egészen piciny, keskeny holdsarló megpillanthatóvá válik.

Ramadán hónap után shavvál hónap következik, mely első 3 napján tartják a böjt megtörésének (arabul íd al-fitr) nagy lakomákkal kísért ünnepét, ezt mondják „kis bajrámnak” is, és ilyenkor adakozni kell a szegényeknek.

Jövőre, 2021-ben, április 13 és május 12 között lesz a böjti hónap…

A húsvét csillagászati és naptártörténeti érdekessége 2020-ban

Szerző: Szoboszlai Endre

A húsvét a kereszténység egyik nagy ünnepe – teológiailag a legnagyobb. Jézus feltámadásának ünnepe. Az ünnep úgynevezett „mozgó ünnep”. De honnan ered ez az ünnep, és miért esik minden évben más és más időpontra? Idén, 2020-ban, például április 12-ére, jövőre, 2021-ben, pedig április 4-ére esik majd húsvétvasárnap…

A húsvét gyökere is izraelita ünnep. A húsvéthoz, mint tavaszváráshoz kapcsolható zsidó ünnep héber neve a pészah. A szó kikerülést, elkerülést, jelent és arra utal, hogy a halál elkerülte azon zsidók házait, akik bárányvérrel jelölték meg hajlékukat.

Pészah és húsvét – izraelita gyökerek és átfedés 2020-ban

A zsinagógai naptárban a Pészah kezdete niszán hó 15-én van. (A nyolc napos ünnep 2020-ban április 9-én indul.) Ez az izraelita ünnep az egyiptomi fogságból való kivonulás emléknapja, egyben a húsvét és a kovásztalan kenyér ünnepe. (Az ünnep nyolc napján tilos kenyeret enni, helyette macesz, vagyis pászka, kerül a hithű zsidók asztalára.)

A zsidó Pészah nyolc napos ünnepi időszaka gyakran átfedi a keresztény húsvét két napját, de még sem minden évben! Ilyen átfedés lesz 2020-ban, a zsinagógai naptár szerint 5780-ban, mivel a keresztény húsvét, a zsidó Pészah negyedik napján kezdődik! 2021-ben pedig a Pészah nyolcadik, azaz utolsó napján kezdődik majd a keresztény húsvét, akkor április 4-én bár a két ünnepnek egymáshoz nincs köze…

Csillagászatilag szemlélve

Jézus pénteki keresztre-feszítése után, a harmadik napon, feltámadott, ezt ünnepli a keresztény világ húsvétkor. A húsvét időpontja azért mozog, mert húsvét vasárnapja a tavaszi napéjegyenlőséget követő első holdtölte utáni első vasárnap! A tavaszi napéjegyenlőség általában március 21-én következik be (de előfordulhat, hogy már 20-án, mint például 2020-ban), ehhez kell tehát igazítani a húsvét időpontjának megállapítását.

(2020-ban pontosan március 20-án kora hajnalban lépett a Nap a Kos jegyébe. A csillagászati tavasz kezdetének napján a Nap pontosan a keletponton kel fel, és a nyugatponton nyugszik, a nappal és az éjszaka időtartama egyenlő.)

A manapság általunk is használt hivatalos naptár a Gergely-naptár, számos (itt most nem részletezett egyéb) hibája között mellesleg éppen a húsvét „mozgóünnep” mivolta is megtalálható!

A március 21-ei nap-éj egyenlőség időpontja eshet olyan szombati napra, amikor éppen holdtölte van. Ilyen évben a húsvét március 22-re esik, tehát ez a legkorábbi nap, amikor elkezdődhet a húsvét. (Ez 1818-ban fordult elő, és legközelebb majd 2285-ben lesz.) A csillagászati tavasz kezdetétől a legtávolabbi időpontra eső húsvét vasárnap, pedig április 25-e lehet. (Ilyen lesz 2038-ban, és 2190-ben, és majdnem a legtávolabbi napra fog esni 2036-ban, amikoris április 24-én lesz.)

A Biblia szerint

Mint tudjuk Jézus Krisztus halála a zsidó húsvét előestjére esett. Máté evangéliumában (27. 45-46) ezt olvashatjuk, a Károli-féle fordításban: „Hat órától kezdve pedig sötét lőn az egész földön, kilenc óráig. Kilenc óra körül pedig nagy fennszóval kiáltja Jézus (…) Én Istenem! Miért hagytál el engemet?”

(A magam részéről érdekesnek találom, hogy az új fordításban 12 órától 15 óráig említik a sötétséget…)

Az idézett rész azt sugallhatja, hogy Jézus felkiáltásakor, illetve halálakor talán napfogyatkozás lehetett, hisz’ az sötétségbe burkolja a környéket… Csakhogy a zsidó húsvétot a holdhónap közepén, tehát holdtölte idején tartották! Köztudomású viszont, hogy teleholdkor kizárólag holdfogyatkozás következhet be és nem napfogyatkozás! Minden bizonnyal egy nem túl korábban lezajlott napfogyatkozás emléke keveredett össze az evangélium tényleges szerzőjének emlékezetében, ami megelőzte Jézus Krisztus keresztre feszítésének valóságos időpontját. A csillagászati kronológia titkait kutatva (sok más szakterület által valószínűsíthető adattal összevetve az időpontot) úgy gondoljuk, hogy Jézus Krisztus halálának valószínűsíthető időpontja – a mai időszámításunkat és a Gergely-naptárat használva –, talán 30. április 7-én lehetett…

A nyári időszámítás érdekességei és jövője

Szerző: Szoboszlai Endre

2020-ban, március 29-én vasárnap hajnalban kezdődik, és október 25-én ér majd véget a nyári időszámítás. A világ számos országában március utolsó vasárnapja és október utolsó vasárnapja közötti időszakban alkalmazzák a nyári időszámítást. Az időszámításba – egyben az élőlények biológiai ritmusba – történő mesterséges beavatkozásnak bizonyára vannak energia-takarékossági hatásai, de vannak negatívumai is…

A nyári időszámítás történetét vizsgálva energetikai, csillagászati, de még hadtörténeti érdekességeket is találunk! Az első világháború időszakában energiatakarékossági okok miatt vezették be az úgynevezett alternatív időszámítást, 1916-ban az USA-ban. Ezt az akkori Magyarország is átvette. A nyári időszámítás lényegében egy olyan megoldás, amikor a helyi időt 1 órával előre állítják az adott időzóna idejéhez képest. Maga az elnevezés azért alakult át, mert ez az időszámítás nagyrészt a nyári időszakra esik – a Föld északi féltekéjén. Érdemes megjegyezni, hogy az arab országok 1973-ban a kőolajat, mint létfontosságú energiahordozót, fegyverként vetették be, ugyanis kőolaj-exportjukat embargó alá vonták. Ezzel olajválság keletkezett a nyugati világ számára. Az energiaínség rákényszerítette a (túl)fogyasztói társadalmakat, arra, hogy a villamos energiával (is) takarékoskodjanak! Az olajválság kapcsán kialakult „energiahiány-sokk” elsőként Franciaországot ösztönözte arra, hogy az 1973-as olajválság tanulsága után bevezesse az energiatakarékossági célú nyári időszámítást (1976-ban).

Magyarországon is hosszú évtizedek óta alkalmazták és alkalmazzák a nyári időszámítást, bár voltak évek, amikor ez szünetelt. Az ötvenes években még az akkori kapacitási nehézségek enyhítésének reményében alkalmazták, míg a későbbi időben az óraátállítási megoldásnak már villamosenergia-megtakarítási célja lett. Magyarországon energetikával kapcsolatos célból 1954-57 között alkalmazták először a nyári időszámítást. Ezen megoldásnak az ötvenes években elsősorban az volt a célja, hogy az akkori villamosenergia-rendszer szűkös teljesítőképessége miatt jelentkező kapacitás-gondot enyhítse. Akkor arra törekedtek, hogy ne kényszerüljenek az egykori áramszolgáltató vállalatok a fogyasztás korlátozására. (Elsősorban a munkanapok esti csúcsterhelésekor jelentkeztek teljesítőképesség-gondok.) Magyarországon 1958 és 1979 között a nyári időszámítás használata szünetelt, míg a villamosenergia-megtakarítási célból történő bevezetése 1980-ban történt.

A természetes világítás kihasználása:

A nyári időszámítás megvalósításának módját az a csillagászattal összefüggő jelenség adta és adja, hogy Földünk északi féltekéjén a napéjegyenlőség kezdetétől (általában március 21) a végéig (általában szeptember 23) hosszabbak a nappalok, és rövidebbek az éjszakák, mint télen. Ebből a tényből az a kézenfekvő előny származhat, hogy amennyiben a napfény által adott ingyenes „fénybiztosítás” nagyjából egybe esik a lakosság ébrenlétével, akkor kevesebb lehet a világításra elhasznált villamos energia mennyisége. Tehát, ha a lakosság átlagos ébrenléti ideje (reggel 7 és este 22 óra között) nagyjából egybeesik a természetes világítás időtartamával, akkor jelentős mennyiségű villamosenergia-megtakarítás érhető el. Ez a felismerés vezetett oda, hogy a kronométereket az utóbbi évtizedekben tavasszal egy órával előre vitték, mégpedig március utolsó vasárnapjának hajnalán (hazánkban 2 órakor 3 órára). Majd aztán ősszel (régebben szeptemberben) egy órával „visszatekerték”. Természetesen ezen megoldás bevezetésekor a menetrendeket is harmonizálni kellett. Az 1990-es évek közepéig hazánkban még az előzőekben említett, szeptember utolsó szombatjáról vasárnapra virradó éjjelen történő (nálunk pontosan vasárnap hajnali 3 órakor vitték vissza az órákat 2 órára), óravisszaállást alkalmazták. Azonban a Nyugat-Európában alkalmazott megoldásra – főleg a nemzetközi utazási menetrendek harmonizációja miatt –, térségünkben is célszerű volt átállniuk a környező országoknak! Így került bevezetésre az, hogy 1996-ban hazánkban is megnyújtották egy hónappal a nyári időszámítás időtartamát.

Októberben már nincs megtakarítás:

Magyarországon tehát 1996-tól kezdődően október utolsó vasárnapjának hajnalán történik a visszaállás a „rendes” (más néven a téli) időszámításra. Bár ez a gyakorlat, vagyis az egy hónappal későbbi visszaállás, ugyan illeszkedik az európai országok gyakorlatához, de célszerű megjegyezni, hogy ez már október hónapban nem jár villamosenergia-megtakarítással! Ennek oka az, hogy az esti 1 órával későbbi időpontban jelentkező világítási célú villamosenergia-megtakarítást ebben az őszi hónapban már kompenzálja a kora reggeli órákban történő (egy órával korábbi), szintén világítási célú többletfelhasználás. Októberben ugyanis már egy hónappal utána vagyunk a csillagászati őszi napéjegyenlőségnek, melynek következtében az éjszakák időtartama nő, míg a nappalok hossza csökken…

Egy érdekes izraeli eset:

Érdekesség, hogy 1999 szeptemberében Ciszjordániában nyári időszámítás volt, míg Izraelben akkor álltak vissza a szokásos időzónára. A ciszjordániai terroristák időzített bombákat készítettek, amit Izraelben lévő társaiknak juttattak el. A társak azonban félreértették a bombák óraszerkezetében beállított időt, így a bombák 1 órával korábban robbantak fel, megölve három terroristát, de így kétbusznyi utas megmenekülhetett…

Lehetnek hátrányok:

Az utóbbi években egyre több szakember veti fel, hogy érdemes-e megbolygatni az életritmusunkat a mesterséges óraátállítással, évente kétszer is? Ugyanis a természetet, az emberek és az állatok életritmusát, nem lehet parancsszóra átállítani! Kimutatták, hogy az állattenyésztésben jelentős károkat okozott ez a megoldás. Például a szarvasmarhák tejhozama csökkent, mivel megzavarták a fejési időpontot. Kimutatták, hogy az óraátállások miatt növekedett a közlekedési balesetek száma. Ezen felül jelentős leterhelést jelent az emberek, főleg a gyerekek, számára a megszokott életritmus megtörése, aminek számos káros hatása lehet, ezért is vetődött fel az utóbbi időben, hogy várhatóan megszüntetnék az óraátállítást.

2021 lehet a megszüntetés éve:

A nyári időszámítás megszüntetéséről az Európai Parlament már 2019 márciusában döntést hozott, vagyis arról, hogy a 2021. év lesz az utolsó, amikor még valamilyen változatban lesz majd óraátállítás. Országonként több megoldással is át lehet majd állnunk, sőt, akár úgy is, hogy egyidejűleg egy adott ország választhatna másik időzónát is attól, amelyikhez jelenleg tartozik! Amennyiben ez bekövetkezne, akkor például Magyarország esetében jelenleg még nem dőlt el a lényeg: vagyis az, hogy hazánk majd a Greenwichi Világidőtől (angol rövidítése és jele UT) egy, vagy két órával fog majd eltérni az „óratekergetés” megszüntetését követően? Vagyis lehet, hogy a nyári időszámítás megszűnte kapcsán, Magyarország a jelenlegi közép-európai időzónából (UT+1 óra) majd átlépne a kelet-európai (UT+2 óra) időzónába, ami tehát két órával eltér a világidőtől. Jelenleg például ilyen a szomszédos Románia.