Mindig van egy első…

Jogan harmadik évében, április 7-én késő este hatalmas fényár világította meg Japán Kyushu szigetét, hamarosan a mennydörgésnél is hangosabb robbanás hangja hallatszott. A jelenség legjobban egy sintó templom,  a Suga-Jinja közelében volt észlelhető. A rémült falubeliek másnap egy furcsa fekete követ találtak a szentély közvetlen közelében.*

Majd a követ, mint egy szent tárgyat a templom papjának adták át, aki egy fadobozba helyezte el, mely doboz aljára feljegyezték, pontosabban belevésték a hullás dátumát és az esemény körülményeit.

(*Sajnos nem tudom pontosan, hogy hol, mert a beszámolók más és mást írnak, van ahol a templom padlóján, van ahol a templom kertjében, olyan is van ahol a szentély közelében, ill. olyat is találtam, ahol a Nakata-shi, a mai Nogata, városka szentély felőli részén találták meg a meteoritot egy kis gödörben.)

Amit biztosan tudhatunk az az, hogy a sintó szentély a mai Nogata városában van, Fukuoka prefektúrában (33° 46′ N, 130° 42′ E). A hullás a Julián naptár szerint 896. május 19-én éjszaka történt. Ez az első szemtanús meteorithullás, ami dokumentálva van. A meteoritot ma is a szentélyben tartják, az eredeti fadobozkában. Tömege 472 gramm.

A Nogata meteoritot mint „shrine treasure” a Szentély ereklyéjeként nagy becsben tartják, és a földi halandók csak öt évente láthatják amikor „Nagy szentély fesztivált” tartják.

(Japánban a fesztiválokat általában a helyi szentély vagy templom – a macuri rendezi)

A hullás hosszú évszázadokra feledésbe került, persze a helyi vallási ünnepek alkalmából néha elővették, de az ereklye inkább a szentély védelmében, elzárva volt.

A szentély akkori főpapja 1922-ben szakértőhöz fordult, egy geológus, bányamérnök, egy bizonyos Chikuho K. Yamada megerősítette a kő meteorit eredetét, azonban ennek a geológusnak a beszámolója is feledésbe került.

Szerencsére a meteorit történetét a rádión keresztül meghallotta Sadao Murayama úr 1979-ben, aki a Tokiói Nemzeti Természet- és Tudománymúzeum munkatársa volt. Még ebben az évben engedélyt kaptak  M. Iwakuma sintó paptól, hogy a meteoritot laboratóriumban megvizsgálhassák.

A 472 gramm súlyú, minden oldalról lekerekített meteoritot üveges, barnás-fekete olvadási kéreg veszi körül. A vizsgálat alapján L6-os kondritnak sorolták be. Főként kevert kristályokat tartalmaz: olivint, hyperstenitet, valamint különböző piroxéneket azonosítottak. Ezen kívül még olyan ásványokat, mint például albit, klorapatit, kromit, troilit, és kevés vas-nikkel.

A fadobozka kormeghatározásának értéke mérési hibán belül volt, mint a rávésett dátum. A vizsgálati eredményről 1980-ban a Meteroritikus Társaság 43. közgyűlésén számoltak be.

(Shima, M., Yabuki, H., Murayama, S., & Okada, A. (1980). Petrography, mineralogy and chemical composition on the chondrite Nogata, Nogata-shi, Fukuoka-ken, Japan, oldest observed fall in the world. In 43rd Annual Meeting of the Meteoritical Society (Vol. 412, p. 1).)

Legutóbb 2016. október 22-én, a Kamikyoku fesztiválon volt látható a Shogun Suga kegyhelyen.

Szerző: Dénes Lajos

A Karoonda meteorit

Végre megérkezett gyűjteményem új, becses múzeumi töredéke! Egy meteoritcsoport névadó darabja, amit most bemutatok az Olvasóknak. Amelynek beszerzésével november közepe óta küzdöttem – de végül kegyes lett hozzám a sors.

Mint talán ismert, a szenes kondritoknak, vagyis a C típusú (Carbonaceous) meteoritoknak több csoportját ismerjük. Ilyen például a Carbonaceous Vigarano, vagyis CV típusú kondrit. Ez a csoport a Vigarano névre keresztelt meteoritról kapta a nevét. Ennek a csoportnak különleges tagja a magyar Kaba meteorit. A tulajdonomba jutott meteorit darabja viszont a Karoonda nevű szenes kondritból származik, mely a CK, vagyis a Carbonaceous Karoonda csoport névadója.

A meteorit 1930. november 25-én hullott Ausztráliában, Karoonda városa közelében. A helyi lakosok egy hatalmas tűzgömbre lettek figyelmesek. A tűzgömb erősen fragmentálódott. A megfigyelések olyan kitűnőek voltak, hogy a fragmentálódó tűzgömb színének változását is le tudták írni. Eleinte ragyogó vörös színe volt, majd átváltott halványkékbe. A tűzgömb kihunyása után hangos mennydörgéshez hasonlatos hangrobbanás érte el Karoonda városát és környékét. A helyiek beszámolója szerint a hanghatásba beleremegtek a házak.

A meteoritot egy hónappal később Kerr Grant professzor találta meg, miután az összegyűjtött információkból egy 5 km-es sugarú területre le tudta szűkíteni a lehetséges szórásmezőt. A meteorit legnagyobb darabja 3,2 kg súlyú volt, amelyet egy 2 m széles és 60 cm mély kráterben talált meg. A további darabokkal együtt 41,73 kg meteoritot gyűjtöttek be.

Az első vizsgálatok a CV csoportba sorolták, de egyéb ehhez mért meteoritok alapján rájöttek, hogy ez külön csoportot érdemel. Így meghatározták az CK csoportot. Magnetitben igen gazdag a mátrix, valamint piroxént és vasban gazdag olivint tartalmaz. Korábbi olvasmányaim szerint érdekesség, hogy oxidált környezetben alakultak ki ezek az ásványok, viszont a meteoritban még sincs nyoma vizes átalakulásnak.

Darabjait amerikai és európai múzeumokban is megtalálhatjuk, valamint néhány magángyűjteményben. A bécsi Természettudományi Múzeum egy 3,9 g-os darabját őrzi.

Szerző: Kormos Balázs

A Sericho pallazit

2016-ban két testvér a kenyai Habaswein falu közelében az elkóborolt tevéit kereste. Feltűnt nekik, hogy sok, viszonylag nagy köveket látnak, pedig azon a területen ritka dolog köveket találni. Arra gondoltak, hogy a kövek talán meteoritok, hiszen a tevehajcsárok második bevételi forrása, hogy meteoritgyanús köveket el tudnak adni a városi kereskedőknek. Néhány hetet arra szántak, hogy a köveket összegyűjtsék habaswein-i házuk udvarába. Egy idősebb falubeli elmondta nekik, hogy ő és fivérei már gyerekkorukban játszottak ezekkel a fura kövekkel. A két szorgalmas testvér közel egy tonnányi követ gyűjtött össze. A köveket később vizsgálat alá vették és kiderült, hogy a kövek valóban meteoritok, méghozzá a legritkább típusú un. kő-vas meteorit, azaz pallazit. 2017. január elején Michael Farmer kapott egy e-mailt, ami egy 107 kg-os pallazit fotóját tartalmazta. Nairobiba utazott, és megvásárolta ezt a követ. Két héttel később visszatért Kenyába Moritz Karlhoz, és Habasweinbe utazott. Itt mutatták meg a már említett testvérek, hogy több mint egy tonna példányt hordtak össze a házuk udvarán.

A képen Michael Farmer látható, aki többször járt Kenyában. A képen a Thika meteorit főtömegével (3575 gramm) és annak megtalálójával, 2011. 07. 16-án. (Mihael Farmer engedélyével)

Tehát Kenyában vagyunk, Isiolo megyében. Habaswein-től nyugatra és Sericho-tól délre lévő területen egy kb. 45 km-es szórásmezőről származnak a begyűjtött példányok.

Kilogramm alatti példányoktól 500 kg közötti tömegeket találtak, ill. találnak. A mai napig 2800 kg-ot gyűjtöttek össze ebből a meteorit hullásból. (Tudom, hogy a „vájt fülű” gyűjtők hullottnak (fall) csak a szemtanús eseményt ismerik el, a többi csak talált (found), no de ez sem létrán jött le anno.)
A falubeliek még ma is találnak darabokat, többnyire a felszínen, ezek döntő többsége 50 kg-nál kisebb példány. A felszínen talált meteoritokon minimális az időjárás okozta hatás, öregedés. Sok példányon található az olvadási kéreg nyoma. Több repülés orientált példányt találtak, köztük egy 129 kg-os és két 16 kg-os mintát.

A Sericho olivin kristályai általában lekerekítettek, és színeik a csillogó zöldtől a narancsig terjednek. A Sericho pallazit fémben gazdag területei jól fejlett Widmanstätten-mintákat mutatnak. A meteorit kisebb darabjai bizonyítják, hogy a beérkező meteoroid fragmentálódott amikor hangsebesség közeli sebességre lassult. Néhány darabon, foltokban, megmaradt a fúziós vagy olvadási kéreg.

Habaswein környéke (01°5’41.16″N, 39°6’8.30″E)

Természetes velejárója a dolognak, hogy amint egy kő dollárokat hoz, komolyabb keresés is elindul, ennek következtében néhány, már a felszín alatt lévő minta is előkerült.

A képen egy nagyobb példány kiemelése látható (NFD, 2017. 06. 13)

Mivel a nagyobb darabokat Sericho falu közelében találták, a pallazit végső neve Sericho lett és 2017. 08. 06-án tették „hivatalossá”, majd a Meteoritical Bulletin, 106. közleményében jelent meg, hogy lajstromba vették.

A pallazitok valóban nagyon ritkák, a hullásoknak csupán 1,2%-a pallazit. A pallazitok Péter Simon Pallasról (1741-1811) kapták a nevüket. Ő adott elsőként részletes leírást egy Krasznojarszk közelében a hegyekben talált érdekes kőzetről. Később derült ki, hogy a minta égi eredetű.

A kisbolygó-méretű test köpeny-mag határáról származhatnak ezek az anyagminták. A két fő alkotó ásvány, fémes vas-nikkel és az olivin. Mellettük kisebb mennyiségben tartalmaznak még schreiberzitet, troilitet és foszfátokat is.

A Sericho meteorit geokémiai vizsgálatának eredménye:

Olivine Fa12.3±0.1, FeO/MnO=57.4±5.4, Cr2O3=0.03±0.01, n=15; kamacite Ni=7.1±0.6 wt%, Co=0.81±0.02 wt%, P=0.06±0.02 wt%, n=17; and schreibersite (Fe1.51Ni1.45Co0.01)P, n=3.

A vizsgálatot végző személyek; L. Garvie, A. Wittmann, D. Schrader, (ASU)
(forrás: MetBull)

Saját, 29,95 grammos példányom

Még annyit jegyeznék meg, hogy a Sericho nem a legstabilabb pallazitok egyike. Ezért célszerű zárt dobozban, sok szilikagélt használva tárolni.

 

Szerző: Dénes Lajos

Meteoritkráter Expedíció a Kutatók Éjszakáján

Idén is várjuk kedves Olvasóinkat a Kutatók Éjszakáján!

2018. szeptember 28-án pénteken 18:30-19:30 között a Budapest-Fasori Evangélikus Gimnáziumi helyszínen (1071 Budapest, Városligeti fasor 17-21., Természettudományi előadó) „A Meteoritkráter Expedíció kalandjai” címmel adok elő. (A részvétel díjtalan, regisztráció nem szükséges.) (A Meteoritkráter Expedíciónak a lengyelországi Morasko-krátermezőnél tett kutatóútjáról szóló kisfilm itt tekinthető meg)

Szerző: Rezsabek Nándor

Dénes Lajos: Meteorithamisítások

Ha valaki feltéved úgynevezett adok-veszek oldalakra, akkor sajnos, hamar belefuthat hamis meteorit hirdetésekbe. Már a feltűnően magas árnak is gyanúsnak kellene, hogy legyen, de az árusok hihetetlen történeteket mellékelnek amiatt, hogy eloszlassák a kételyeket.

Az egyszerű csalók salakdarabokat vagy a megszokottól eltérő kavicsokat árulnak. De vannak profi csalók is, akik valódi meteoritet árulnak, csak nem azt, aminek nevezik őket.

Mindkét esetről írok példát!

A Port Orford-i pallazit

A egyik főszereplő Dr. John Evans orvos.

A kaland úgy kezdődött, hogy 1847-ben Dr. David Dale Owen, akit az Egyesült Államok Geológusának neveztek ki, Wisconsin, Iowa, Minnesota és Nebraska egy részének geológiai felmérésének elvégzésére utasították. Ő a munka elvégzésére Dr. John Evans és Dr. BF Shumard munkatársakat választotta. Evans munkája hamarosan felkeltette Owen figyelmét, és megállapította, hogy az orvos geológusként is megállja a helyét.

1848-ban egy Midwesti felmérésen vett részt, bár orvos volt, mégis sok érdekes fosszíliát gyűjtött be, amik miatt komoly nemzetközi elismerést szerzett.

Később Dr. John Evans egy expedíció részeseként ment el, hogy a Kelet-Puget Sound vasútvonal számára megfelelő nyomvonalat jelöljenek ki. Ekkor már geológusként alkalmazták.

1856-ban Oregonba költözött munkája részeként és ez évben Port Orford területére utazott. Dr. Evans két hetet töltött a Coquille és az Umpqua folyók területén a déli Oregon partján. Valahol az út mentén összegyűjtött egy kőzetmintát, amelyet a bostoni kémikus Dr. Charles Jackson elemzett, és rávilágított arra, hogy ez egy kivételes fajta meteorit, amelyet pallazitnak neveznek.

A másik főszereplő maga a pallazit meteorit, amely a kő-vas meteoritek családjába tartozik. Fe-Ni ötvözet és szilikátos anyag keveréke. A hullások 1,2%-a kő-vas meteorit, tehát nagyon ritka. A kisbolygó méretű test köpeny-mag határáról származhatnak ezek a meteorit minták. A két fő alkotó ásvány, fémes vas-nikkel és az olivin. Mellettük kisebb mennyiségben tartalmaznak még schreiberzitet, troilitet és foszfátokat is.

A család másik tagja a mezosziderit. Szintén fele részt fémes nikkel-vas ötvözetből, és fele részt szilikát összetevőkből áll. A szilikátos részben főleg olivint, piroxént és Ca-ban gazdag földpátot találunk. A mezoszideritek breccsásak. A legnagyobb különbség a pallazit és a mezosziderit között az, hogy a pallazit esetében a fém mátrixban van a szilikátos anyag, addig a mezoszideritben a szilikátos mátrix foglal magába kisebb-nagyobb fémszemcséket.

Mezoszideritből is találtak jó nagy darabokat. Például a Vaca Muerta, amely a chilei Atacama-sivatagban hullott és 1861-ben találták meg. A sok töredék össztömege 3,83 tonna volt egy nagy kiterjedésű szórásmezőben. De most maradjunk a pallazitnál.

Tehát, 1856-ban Dr. John Evans jelentette, hogy egy Oregon állambeli (USA) Port Orford nevű helység közelében egy közel 10 tonnára (22 00 font súlyra) becsült pallazit meteoritra bukkant, és egy darabkát az US Geological Survey (Földtani hivatal) előtt be is mutatott.

Dr. John Evans a megtalálás helyének a Kopasz-hegyet jelölte meg, és elmondása szerint a meteorit kiálló része körülbelül öt lábnyira a talaj fölé nyúlt.

Biztos ami biztos, Evans úr hangsúlyozta, hogy a pallazit az egyik legdrágább meteorit típus és a 10 tonnás tömeg miatt még egyedibbé teszi az anyagot, árát 300 millió akkori dollárra becsülték.

Az USA Kongresszusa utasította a Belügyi hivatalt, hogy a “Port Orford” meteorit felkutatásához és elszállításához a szükséges költségeket biztosítsa. Jól alakultak a dolgok Evans úr szempontjából.

A kiszivárgott információk és találgatások feltüzelték a kincsvadászokat, viszont vitát váltott ki a geológusok és a csillagászok között. Emiatt a kongresszus késlekedve különített el pénzt a begyűjtésre. Ezt Dr. Evans már nem élhette meg, mert 1861. április 13-án meghalt tüdőgyulladásban. Viszont mivel nagy pénzre számított, ezért titkolózott. Halála után átkutatták a hagyatékát és nem találtak olyan térképet amely részletesen meghatározta volna a „megtalálás” helyét. Ekkor vizsgálni kezdték Dr. Evans kutatási jegyzőkönyveit.

Dr. Evans kutatásai a Csendes-óceán északnyugati részén lévő Smithsonian Intézet birtokában vannak. A releváns bejegyzések az “Útvonal a Port Orford-tól a Rogue River-hegységig” cím alatt találhatóak, amely túl általános és félrevezető helymeghatározás csupán. Naplóbejegyzései szerint Dr. Evans észak felé haladt, és soha nem lépte át a szakadékot a Rogue River folyó felett.

Dr. Evans 1856. július 18-án Port Orfordból indult el, és útja július 31-én a Willamette-folyó partjainál végződött. Naplójában nem említi különösebben a meteoritot, mert nem volt tudatában a találásának természetéről. Ugyanakkor kitért a “kopasz hegyre”.

A mintát vizsgáló Mr. Jackson emlékeztetett arra, Evans elmondása szerint, a helyszín körülbelül negyven mérföldre van a Port Orford-tól a Bald Mountain tetején. A kopasz hegység, mint Dr. Evans leírta, magasabb, mint a környező hegyek és könnyen látható az óceánról.

1929-ben, majd 1939-ben a Smithsonian Intézet feltáró expedíciókat szervezett, de semmit sem talált, még nyomokat sem. Számos kopasz hegy van a környéken; az egyik délkeletre Port Orford-tól, egy van Coos megyében, és egy kék kopasz hegy a Rogue folyó környékén. Voltak, akik szerint az Iron Mountain, és a Barklow Mountain, estleg Bray Mountain vagy a Granite Peak lehetett. De soha nem talált senki semmit.

Ezért a mintát újra vizsgálták és összetételében és izotópjaiban egyezést mutatott az Imilac néven nevezett pallazittal. Az Imilac pallazitot 1822-ben találták Chilében az Atacama sivatagban TKW: 920 kg (teljes ismert tömeg). Összetétele: 90% Fe , 9,9% Ni , 21,1 ppm Ga , 46,0 ppm Ge , 0,071 ppm Ir.

Később talajmintákat gyűjtöttek a feltételezett helyekről de az az érzékeny proton-magnetométerekkel végzett mérések nem igazolták, hogy jelentős meteorit becsapódás történt volna a környéken.

Tehát, a trükk nem hozott gazdagságot Evans úr számára, mert előre nem fizetett senki a mesés kincsért, ha még életében kiderül a csalás, valószínűleg börtön várt volna rá…

A másik történet magyar származású!

A híres Kén utcai meteorit

Bár inkább hírhedtnek kellene nevezni! Az 1960-as években elhíresült, mert a televízióban is publicitást kapott. Akkoriban nagyon népszerű volt dr. Öveges József. Hetenként szerepelt fizikai tárgyú előadásokkal, kísérletekkel a tévében. Történt, hogy az egyik Kén utcai üzemben (Bp. IX. ker, a Gubacsi utat keresztezi) két fiatal munkás láng-hegesztővel dolgozott. Észrevették, hogy egy udvaron fekvő kő darab a forró gázlángban olvadozni kezdett, olyan felszíni olvadék folyás mutatkozik, mint egyes meteoritokon. Ezt onnan tudták, hogy a gyárban dolgozott egy idősebb művezető, aki rendszeresen olvasgatta az ismeretterjesztő cikkeket, nézte a TV-adásokat, és kiselőadásokat tartott a munkatársaknak, pl. a meteoritokról is.

“No, megtréfáljuk Jani bácsit!” – gondolták, és az olvadékony követ felhevítették. Amikor olyan “meteorit-szerű” lett, amit a művezető elmondása alapján gondoltak, lelkendezve oda vitték Jani bácsihoz. Elmondták, hogy valami süvítést és puffanást hallottak, és ezt a követ találták az udvaron, “még forró is”. Az öreg fellelkesült, azonnal elvitte a “meteoritot” a széles körben ismert Öveges professzornak, aki pedig a tv-híradóba is bemutatta! Nagy lett a felhajtás! Viszont a tévéseknek eszébe jutott, hogy egy hiteles, „űrügyekben” is szakértőnek kellene nyilatkozni. Felkérték hát dr. Kulin Györgyöt. Kulin pedig azonnal gyanút fogott, mert a kődarab nagyon könnyű (kis sűrűségű) és nagyon “mészkőszerű” volt. Elővette hát a két ifjú hegesztő-munkást, elkezdte faggatni őket, és azt is megígérte, hogy ha elmondják a valóságot, nem lesz bajuk. Így vallották be, hogy bizony csak tréfa volt az egész, maguk sem gondolták, hogy ennyire komolyra fordul a dolog.

A tanulság az, hogy mindig szakértőknek kell megmutatni a mintát, mert a lelkesedés átragadhat a méltán híres, köztiszteletben álló, de más tudományokban jeleskedőkre is.

Forrás:

1, The Port Orford Meteorite: It Wasn’t a Big Hoax by JD Adams

2, Kén utcai meteorit; Külön köszönet Bartha Lajos barátomnak aki megosztotta ezt a történetet velem!

Történelmi magyar meteoritok nyomában – Kabán

A Meteoritkráter Expedíció csapatának “fele”, Rezsabek Levente és Nándor, kiegészülve a helyi nevezetességeket jól ismerő Bagosiné Mária Tanárnővel, valamint a Planetology.hu felelős szerkesztőjével, Kovács Gergővel, folytatta a történelmi magyar meteoritok hullási/találási helyszíneinek bejárását: augusztus 5-én a kabai meteorit hullási helyét, illetve a város központjában lévő emlékművet látogatta meg.


Kovács Gergő és Rezsabek Nándor, a szerkesztők.

Az 1857-ben hullott Kaba főtömegét a közeli Debrecenben, a Református Kollégiumban őrzik. A CV3 típusú, 3 kg-nyi kőmeteoritban elsőként mutattak ki szerves anyagokat.


A hullás helyén található emlékmű.

A csapat a közeli Bárándról indulva, Kabán Mária Tanárnő jóvoltából kávé, sütemény, szilvaszedés után kereste fel a hullás helyén, valamint a város központjában álló emlékművet.


Emlékmű a település központjában.

Megnézte a meteorit nevét őrző egyesület sporttelepet, továbbá a magát a kabai meteorittal népszerűsítő chiliszószt árusító boltot.


A nevében a meteoritra utaló helyi sportegyesület.

Kétségtelen, Kaba valamennyi történelmi meteoritot magáénak tudó település közül az, amely leginkább őrzi a tudománytörténeti esemény emlékét.

Szerző: Rezsabek Nándor

Dénes Lajos: A nagy ordovician meteorzápor

2014-ben írtam egy öt részes bejegyzést a Csillagvárosba erről a témáról, azonban én a meteoritok szempontjából közelítettem meg ezt az eseményt. Most valahogy ismét előkerült a téma egy beszélgetés alkalmával…

“470 millió évvel ezelőtt volt egy hatalmas ütközés a Mars és a Jupiter között, két 100 km-es szikla ütközött össze, ez volt a legnagyobb karambol a Naprendszerben az elmúlt 1 milliárd évben.”

Ez elég erős állítás, és az erős állítások erős bizonyítást kívánnak. Engem a bizonyítás érdekelt. Nos, először tisztázzuk, hogy miről is van szó. Az ordovícium egy geológiai korszak ill. rendszer. Ez egy 485,4 ±1,9 és 443,4 ±1,5 millió évvel ezelőtti időszak. A korszakot Charles Lapwort határozta meg 1879-ben. Két geológus, Swdick és Murchison, vitatkozott azon, hogy az észak-walesi kőzetek a kambrium vagy a szilur korszakban keletkeztek-e. Lapworth megvizsgálta a két rétegben talált fosszíliákat és talált olyanokat is amelyek különböztek a kambriumi és sziluri leletektől. Javasolta, hogy külön kategóriát állítsanak fel emiatt és javasolta, hogy ordovíciumnak (Ordovician) nevezzék el egy Wales területén élt ordovik nevű kelta törzsről. Az 1906-os Nemzetközi Geológiai Kongresszus ezt hivatalosan el is fogadta.

Az ordovícium idején jellemzően magas volt a tengerek szintje. A tremadoc korszakból a valaha létezett legnagyobb transzgresszióra (relatív tengerszint-emelkedés) maradtak bizonyítékok. Az ordovíciumi kőzetek jórészt üledékesek és jelentős arányt képvisel köztük a mészkő. Az élet a tengerekben virágzott, a nemzetségek száma megnégyszereződött. Puhatestűek, kagylók, csigák, csigaházas polipok, állkapocs nélküli halak (ők az első igazi gerincesek), és a korszak végére megjelent az első állkapcsos hal is. Ezek annyiból érdekesek számunkra, hogy a korszak végére jellemző volt egy tömeges kihalás. 443 millió évvel ezelőtt, a tengeri nemzetségek 60%-a kihalt. Itt kezdődne a meteoritos történet…

Egy elmélet szerint 470 millió évvel ezelőtt a fő aszteroidaövben ütközött két kb. 100 km-es aszteroida. Ez az ütközés létrehozott egy hatalmas törmelékfelhőt. Ebből a törmelékfelhőből relatíve sok ütközött a Földel. Az ütközések gyakorisága legalább százszorosa annak, ami jelenleg tapasztalható. Ezek a törmelékek ettől az időponttól megtalálhatóak az üledékes kőzetekben. Az elmélet ehhez a meteorzáporhoz köt két drámai eseményt. Az egyik, egy sor hatalmas földcsuszamlás, a másik pedig egy tömeges kihalási esemény. Az elmélet abból indul ki, hogy a svéd mészkőbányák elértek egy olyan réteget ahol az addig szép fehér mészkőben „csúnya” zöld foltok jelentek meg. Ezek a furcsa foltok, csomók fosszilis meteoritok. Ez rendkívül ritka jelenség, ezelőtt a geológusok még nem láttak ilyet. Mario Tassinari nevű amatőr geológus azonosította 1980-ban, de a szakma nem fogadta el. Azóta a kutatók, főleg Birger Schmitz, (Svédországi Lund Egyetem), több mint 90 db meteoritot talált ebben a mészkőbányában. Azért ugye ez sem gyakori… Ezt felismerve, nekilátott egyéb bizonyítékok keresésének az azonos korú kőzetekben. Ez úgy történt, hogy a mészkövet savban oldotta, és apró krómszemcséket keresett benne. Króm van a Földön is, de a kémikusok valószínűsítették, hogy ezek a szemcsék az űrből érkeztek. Szorgos munkával talált ilyen szemcséket kínai, orosz, svéd, skót és argentin mintákban is. Azonban akkor talált egy részletes, írországi ásványi elemzést az ottani, hasonló korú kőzetekről és ezekben a kőzetekben is megtalálták a krómszemcséket. Az írek állítása szerint viszont a krómszemcsék erodált ofiolitból származnak. (Az ofiolit az óceáni kéreg kőzetegyüttese. Az óceánközépi hátság vidékén keletkezik, a Föld köpenyéből fölnyomuló magmából.) Kinek van igaza? A matematika kegyetlenül precíz, de sokszor segít a viták eldöntésében.

Ebben az esetben is így történt. A svéd minta azért tartalmazott annyi meteoritot, mert az ott talált kőzetminta rétegeinek minden centimétere közel 10 000 év alatt jött létre, ugyanis akkoriban tenger borította a felszínt. A fenéken iszapból, mészkősárból és szerves „hulladékból” keletkezett a kőzet, tehát egy nyugodt, stabil felszínre potyoghattak az égi vándorok. Ugyanakkor az ír kőzet ezerszer gyorsabban alakult ki, melynek során homok, kavics és a magas hegyekből lezúduló iszap alakult át kőzetté. Ha ezer kilogramm ír feldolgozott kőzetben található krómot célirányosan vizsgáltak, akkor minimális volt az a króm-mennyiség ami égi eredetű. Tehát matematikailag igen kevés a valószínűsége, hogy a két dolog összefüggjön egymással. Így megdőlni kezdett az az elmélet, miszerint a nagy fosszilis földcsuszamlást egy aszteroida-becsapódás okozta.

Schmitz nem adta könnyen magát, célirányos vizsgálatokba kezdett. Kezdetben volt két földtörténeti korszak, a kambrium és a szilur. Ezek közé beékelődött, Lapworthnak köszönhetően az ordovícium. (Ezen korszakok tovább vannak tagolva, korai, közép és késői korszakokra, mely korszakok tovább vannak finomítva…) Bár évmilliókról van szó, mégsem születik meg csak úgy egy új korszak, kell valamilyen különleges, jól mérhető, bizonyítható esemény ehhez. Az akkori tengeri élőlények 60%-a kipusztult. Ez nagyon jól mérhető.  Meteoritikában pl. a vékony csiszolatokat úgy is kell vizsgálni, hogy egy rácsot helyeznek a mintára és meg kell számolni, hány kerek, illetve hány szögletes, már sokkhatásnak kitett kondrum található az adott területen. Ezen arányok értéke befolyásolja, hogy milyen petrológiai osztályba sorolják a meteoritot. Mint azt tudjuk, egy mérés nem mérés, két mérés fél mérés, tehát nem mérés… Van tehát sok mérés, most már számíthatunk szórást… Volt, van egy másik anomália, miszerint az idősebb kőzetrétegek között fiatalabb réteget találtak. Erre a magyarázat lehet a földcsuszamlás, de mi okozta? A harmadik dolog amit észre vettek, hogy az ordovícium és szilur határán a kőzetréteg feltűnően sima felületű, erre a jég magyarázat. Persze ez nem egy hideg téli éjszaka, hanem egy jégkorszak jellemzője. Mivel a Föld stabil pályán kering a Nap körül, a lehűlés okát a Föld légkörének hirtelen megváltozása okozhatta. A fent leírt jelenségeket próbálják az elméletek megmagyarázni.

A lehetséges magyarázatok:
– meteoritzápor
– egy közeli szupernóva hatása
– felfokozott vulkáni és tektonikai tevékenység

Tehát Schmitz, aki egy hatalmas meteorit-záporral magyarázná a jelenséget, sokat kell kutatnia, mérnie és számításokat kell végeznie. Nem elég állítani, hogy egy hatalmas aszteroida vagy annak darabjai ütköztek a Földdel, tények kellenek. Meg kell határozni, hogy mekkora az a tömeg és energia, ami kiválthat egy ilyen mértékű változást az egész bolygó életében. A könnyű válasz: nagy! De ez az állítás ide kevés! Nagy meteoritban sok az irídium. Hol van az a kőzetréteg, ahol feltűnően sok az irídium (pl. olyasmi, mint a sokat emlegetett KT vonal vagy határ tartalmaz)? A kora megegyezik a vizsgált jelenség korával? Megváltoztathatta-e a légkört annyira, hogy kialakuljon egy jégkorszak? Ezekre és még rengeteg más kérdésre kell válaszolni Schmitznek.

Ezért különböző tudományágak szakértőitől kért segítséget. A több, mint 90 db meteorit és kőzetágy alapos vizsgálatába kezdtek. A meteoritekről megállapították, hogy L-kondritok, a mintákat porrá őrölve az elemzés szerint ugyanabból a szülőégitestből származnak. Izotópok segítségével Schmitz ki tudta mérni, hogy a fragmentekben lévő krómszemcsék mennyi ideig voltak kitéve a kozmikus sugárzásnak. Azt tapasztalta, hogy minél fiatalabb a vizsgált szikla, annál több ideig volt kitéve a sugárzásnak, ez is azt támasztotta alá, hogy egy hosszabb ideig tartó meteorit, ill. törmelékhullás nyomait találta meg. Egy 1964-es tanulmány amely először L-típusú kondritnak azonosította a mészkőben talált fosszilis meteoritot, az ún. sokk-életkorát 470 millió évesnek azonosította. Ez egy független mérés volt, az adatok összevágtak. Következett a spektrumanalízis. A vizsgálandó port elpárologtatják és a színképét összehasonlítják lehetséges kisbolygókéval. A mérés eredményeként azt állapították meg, hogy az „eredeti test” illetve, ami maradt belőle, stabil pályán kering. Pályája alapján a Gefion- aszteroidák családjába tartozik. A még napjainkban hulló L-típusú kondritok 20%-a származik a Gefion családból.

A Gefion vagy Gefionian család főleg „S-típusú” kisbolygóból, kb. 100 törzstagból áll. A természeti jelenségekre jellemző a hatványfüggvény-eloszlás. Ez azt jelenti, hogy a kis hatások gyakorisága nagy, a mérsékelt hatásoké kisebb, a nagyobbaké ritka és a nagyon nagy hatásoké igen ritka. Az elmélet arra apellál, hogy a megszámlálhatatlan apró krómszemcsék és a sok apró meteorit megléte miatt, teljesen ésszerű azt feltételezni, hogy nagyobb tömegű, krátert létrehozó becsapódás is érte a Földet az ordovícián korban. Megemlíti a Lockne-krátert Svédországban, vagy a Osmussaar-breccsát Észtországban. Persze ezt nehéz így igazolni, mert a kráterek gyorsan pusztulnak, tehát az üledékes kőzeteket kell vizsgálni a megfelelő földtörténeti korból. A vita tovább gyűrűzött. John Parnell az Aberdeen Egyetemből javasolta, hogy modellezzék, hogy a nagy becsapódások létrehozhattak-e hatalmas földcsuszamlásokat a kontinentális margók környékén. 13-14 hasonló, nagy csuszamlást feltételeznek az ordovíciumban világszerte. Ő külön kiemelte az Angliai Lake District 1500 méter vastag gyűrt, nyírt, hajtogatott üledékét. Persze ezzel nem mindenki értett egyet, mert a masszív földcsuszamlások nem ritkák. A tenger alatti kontinentális lejtők instabillá válhatnak, főleg a tektonikailag aktív területeken.

A Lake District egy vulkáni ív mellett fekszik. A földrengések megmagyarázzák a megcsúszást, nem kell feltételezni egy meteorit becsapódás hatását. 2008-at írunk és még nincs vége a történetnek. A kutatás tovább folyt. Újabb esetleges becsapódási pontokat feltételeznek, most Észak-Amerikában. Ilyen az Ames-kráter Oklahomában, vagy a Decorah kráter Iowaban, a Slate-szigetek krátertó és a Wisconsinban található Rock Elm-kráter. Az jól látszik az ábrán, hogy milyen egyezésekre alapoz Schmitz.

Az ábrát Schmitz és munkatársai készítették 2008-ban, nyolc részre osztva a korai és közép ordovícián korszakot, és az üledékes kőzetvizsgálati eredményeit ábrázolja. A fekete vonal mutatja a biológiai sokszínűséget, a fajok számát. A nagyobb kihalási eseményeket a kék vonal mutatja. A piros vonal mutatja azt, ahol megjelenik a földönkívüli króm és ahol az ozmium izotópok megváltozását mérték (az ozmium egyik vegyülete, az ozmium-tetroxid erősen mérgező, koncentrációja a levegőben nem haladhatja meg a 0,0016 mg/m^3 értéket. A fém már 107 g/m^3 koncentrációban a levegőben tüdő-, bőr- és szemkárosodást okoz. Hét izotópja ismert ezek arányából, a hozzáértők jól ellenőrizhető következtetéseket tudnak levonni). Látszik, hogy a fekete minimum és a piros maximum jól összevág. Schmitz elmélete, amit „Great Ordovician Biodiversification Event – GOBE” névvel illetett, arról szól, hogy egy környezeti katasztrófa miatt tömeges kipusztulás következett be, de fontos, hogy nem pusztult el minden élőlény. A hatalmas meteorzápor ill. nagyobb becsapódások miatt a Föld felszíne is változásokat szenvedett, tagoltabbá vált, növelve a lehetséges élőhelyek sokszínűségét. Lényeges változás történt a légkör összetételében. A légköri oxigén megnövekedett, és az abból képződő ózonréteg a felszínre érkező ibolyántúli sugárzást minimálisra csökkentette. Ezzel megnyílt a lehetőség a növények szárazföldi elterjedésére (az ózonréteg jelentősen a szilur végére vastagodott meg annyira, hogy a szárazföldi élet tömegesen megjelenhessen). Az elmélet pozitív szemléletére az utal, hogy a név nem a kihalási hullámot, hanem az azt követő, az élet burjánzására, a flóra és fauna hatalmas és gyors fejlődésére utal. Az elmélet még a mai napig sem bizonyított. A lényeg, hogy volt az adott időszakban kiemelkedő meteorithullási esemény, de azt nem állíthatjuk, hogy ez akkora volt, hogy módosítsa a 470 millió évvel ezelőtti Föld klímáját, biológiai arculatát. A legutolsó cikk a témáról, amit találtam, 2013-as.

Ez volt a 2014-es cikk vagy dolgozat.

Mit találtam róla most? Először is megosztom a Metageologist 2013 Szeptember 30-án megjelent cikkét, hogy az érdeklődő eredetiben is olvashassa, amit itt összefoglaltam [2]. Két dolog miatt is érdekes és megéri elolvasni: egyrészt itt láthat szép fotókat, másrészt legalul van egy komment. Ezt a Metageologist írta 2017. 02. 04-én. Egy link látható, ami a Sience Daily oldalára viszi az érdeklődőt. A cím nem körülményeskedik sokat…

A mítosz összeomlott: nincs kapcsolat a hatalmas aszteroida becsapódás, és a biológiai sokféleség növekedése között [3]. Pár mondatban összefoglalom, hogy miként omlott össze a mítosz. Állítás: az ordovicianban volt egy hatalmas meteorzápor, ez megváltoztatta a földi környezeti feltételeket, éghajlati változásokat okozott, a légkör összetétele is megváltozott. A domborzati viszonyok átalakultak, fokozódott a vulkanizmus. Az élőlények 60%-a kipusztult ugyan, de a megmaradt élet, amely túlélte ezt a kataklizmát, hihetetlen fejlődésen ment keresztül. Cáfolat: A technika fejlődésével sokkal pontosabban tudták megállapítani a fosszíliák korát. A régebbi mérés a fosszíliák korát pontatlanul határozta meg. Most a cirkonkristályok elemzésével nagyon pontosan megállapítható az az időpont, amikor a cirkonkristály a felszínre kerül. Ez megegyezik a megnövekedett vulkáni aktivitás korával. Az adódott, hogy a meteorzápor később történt, legalább 2 és fél millió évvel, mint a megnövekedett vulkáni aktivitás miatt a felszínre került láva, és az ebben található cirkonkristályok kora. Ebben a hamurétegben az „új élőlények” fosszíliái is megtalálhatók. Tehát a meteorzápor nem okozhatta a tömeges kihalást. A cirkonkristályos kormeghatározásról is csak pár mondatot írok, mert kiváló linkeket adok a cikk végén. A régi (>50000 év) vulkánkitörések legelterjedtebben használt geokronológiai módszere a cirkonkristályokon végzett kormeghatározás. A cirkónkristály egy cirkónium-szilikát (ZrSiO4) ásvány. Ezek az emberi hajszál vastagságával összemérhető, tehát 100-300 mikrométer nagyságú szemcsék. Ezen kristályok esetében a kristályszerkezetben lévő „hibák” segítenek a kormeghatározásban. Az ásványok kristályrácsába a fő alkotókon kívül, elemhelyettesítéssel beépülhetnek nyomnyi mennyiségben idegen elemek is, ha azok ionjainak mérete és töltése közel van a fő komponenséhez. A cirkon ásványban így a cirkóniumot helyettesíteni tudja a hafnium, továbbá az urán és a tórium is. Az uránnak két radioaktívan bomló, instabil izotópja van, a 238 és 235 tömegszámú izotópok, míg a tórium izotópjai közül a 232 tömegszámú atom stabilizálódik radioaktív bomlással, a végállapot valamilyen ólomizotóp (206, 207, 208 izotópok). A vulkáni képződményből kinyert cirkonkristályokon történik az izotópmérés. Két fontos dolgot kell figyelembe venni. Az első, hogy az izotópok mennyiségéből, az adott izotóprendszerre jellemző felezési idő figyelembe vételével meg tudjuk határozni a jó keletkezési időt, fontos feltétel, hogy a keletkezés után az izotópok a kristályban maradjanak, azaz zárt maradjon a rendszer (azaz csak annyi származék-izotóp legyen, ami a radioaktív bomlás során keletkezett és annyi instabil izotóp, ami a radioaktív bomlás után visszamaradt). Ez az állapot különböző izotópok, különböző ásványok esetében más és más hőmérséklet elérése után áll be. A cirkonkristály akkor válik ki, ha a kőzetolvadékban a cirkónium mennyisége már olyan értéket ér el, hogy az olvadék „túltelítetté” válik ebben az elemben. A cirkonkristályban kb. 900 Celsius fok alatt már nem távoznak el az urán és az ólom izotópok, azaz a kristályosodás a záródási hőmérséklet alatt történik. Viszont a héliumizotóp csak 180 Celsius fok alatt marad benn a kristályban. A mérés elve az, hogy a láva a felszínen percek – órák alatt lehűl 180 fok alá, tehát a héliumizotópok is a kristályba zárva maradnak. Tehát, amennyiben megmérjük a cirkonkristályban lévő héliumizotópot és az urán- és ólomizotópokat, akkor ki tudjuk számolni, hogy a vulkánkitörés óta mennyi idő telt el. A kormeghatározáshoz szükséges izotópok mennyiségét lézerablációs ICP-tömegspektrométerrel végzik. Ez persze nem ilyen egyszerű ahogy leírtam, ez nagyon bonyolult mérés [4]. Tehát szerintem szerencsés gyakran ellenőrizni néhány tudományos állítást, hiszen a tudomány nem az igazságot írja le, hanem a legvalószínűbbet.

Ez így van jól!

Dénes Lajos

Források:
[1] http://www.csillagvaros.hu/forum/viewtopic.php?f=24&t=2254&start=630#p46780
[2] http://all-geo.org/metageologist/2013/09/the-great-ordovician-meteor-shower/
[3] https://www.sciencedaily.com/releases/2017/02/170203110156.htm
[4] http://tuzhanyo.blogspot.hu/2018/03/piciny-cirkon-kristalyokbol-kinyert-ido.html