Debrecentől Kabáig

A debreceni Magnitúdó Csillagászati Egyesület néhány oszlopos tagja 2020. október 3-án, egy szakmai kirándulás keretében Kabára utazott, hogy felkeresse az 1857-ben hullott meteorit emlékműveit. Szoboszlai Endre cikke.



Ellátogattunk a híres kabai meteorit lezuhanási helyére

Október első szombatján kirándulást szerveztünk a kabai meteorit lezuhanási helyére, Kaba város határába. Először a város központjában megnéztünk minden látnivalót, szobrokat, épületeket… Többek között láttuk a központban felállított emlékkövet is, melyre a meteorithullás tényét “vésték” kőbe, majd kimentünk a határ azon pontjához, ahol a lezuhanás helyén felállított emlékkövet találhatja meg minden “csillagász-zarándok“.

A hullás helyén. Fotók: Károlyi Gábor, Zajácz György


A szenzációs esemény még 1857. április 15-én este történt Kaba város határában.

Ekkor hullott le a világ talán leghíresebb, majd három kilogrammos szenes kondrit meteoritja, melyről kevesen tudják, hogy megtalálása lényegében egy lovasgazdának és annak lovának köszönhető… A korabeli híradások kisebb nagyobb eltérésekkel számolnak be az eseményről. A történés valószínűleg a következő lehetett: Szilágyi Gábor a házának tornácán elszenderült. Majd a szabadtéri szundikálásból arra riadt fel, 22 óra körül, hogy nagy robaj van! Pillanatokon belül az égbolton megpillantott egy fényes tűzgolyót, mely lángoló csóvát húzott, majd pár pillanat múlva becsapódott, vélhetően a közelben. A földi légkörbe beérkező, száguldó meteoritot látta a gazda. A meteorit a súrlódás miatt felizzott, külső része elégett, de így is egy közel három kilogramm tömegű szenes kondrit meteorit kerülhetett a tudomány kezébe…



A maga módján a derék ló is jelzett

Másnap a figyelmes gazda kilovagolt a tanyájára, de útközben, a becsapódás közvetlen közelében a lova megbokrosodott, majd horkantott és végül nem akart tovább menni! Ekkor Szilágyi Gábor meglátta a becsapódás helyét, melyet röviddel a megtalálás után több ismerősével feltárt. Ezt követően szerencsére a település elöljárósága is hírt kapott a ritka égi-földi eseményről, majd értesítették a Debreceni Református Kollégiumot. A tudósoknak köszönhetően ezt követően indult a világhírnév felé a ritka égi ajándék. Az évtizedek során sok város (Göttingen, Bécs, London, Moszkva, Párizs stb.) világhírű intézeteibe is elkerült a kő pár lenyesett darabja, elemzésekre. A kabai meteorit korabeli vizsgálata számos új felismeréssel ajándékozta meg a tudományt, mivel különleges, ritka összetételű (szerves anyagot is találtak benne). Ráadásul ez a meteorit a Naprendszerünk kezdeti időszakának a hírnöke lett, hiszen anyaga a jó négymilliárd évvel ez előtti ősi állapotokat őrizte meg!

A város több helyen is példamutatón megőrizte az esemény emlékét


A Debreceni Kollégium nem hagyta elvinni a követ

A világhírnévre szert tett kabai meteoritot a korabeli Habsburg-udvar szerette volna megkaparintani, azonban a Debreceni Református Kollégium vezetősége ezt ügyes fondorlatokkal meghiúsította! Így a ritka égi ajándék eredeti fődarabja, mely a mintavételezések miatt ma már csak körülbelül 2,6 kg, jelenleg is a Debreceni Református Kollégium féltve őrzött kincse.
Kaba város a becsapódás napját, április tizenötödikét, a közelmúltban a Város Napja ünnepének nyilvánította, és emlékhelyet létesített a helyszínen.

Akik részesei voltak a kirándulásnak: Gyarmathy István, Károlyi Gábor, Károlyi Gáborné Eta, Kocsis István, Simándiné Éva, Szoboszlai Endre, Zajácz György.

Forrás: MACSED

A 25. napciklus kezdetén

Szerző: Balázs Gábor

2020 folyamán időnként egy-egy apróbb napfolt feltűnt, július végén, augusztus elején ismét több kisebb folt jelent meg, ezáltal arra lehetett következtetni, hogy Napunk túl van aktivitásának minimumán, új ciklus kezdődött el. Ezt a felvetést néhány hete a NASA is igazolta, ugyanis elemzéseik szerint Napunk 2019 decemberében volt a legkevésbé aktív, ekkor ért véget a 24. ciklus, ekkor kezdődött el egy újabb 11 éves periódus. Előrejelzésük szerint a 25. ciklus maximuma 2025 júliusában várható, mely hónapban 115 körül alakulhat a napfoltok száma.

A napfoltok sokéves eloszlása.
Forrás: http://www.sidc.be/silso/IMAGES/GRAPHICS/V1.0/wolfmms.png
Napunk, a folttevékenységének minimuma és maximuma alatt.
Forrás: NASA

Röviden a napfoltokról:

A foltok a Nap ún. fotoszféráján jelennek meg. Területükön a felszíni hőmérséklet hozzávetőlegesen 1500 °C-vel hidegebb a nyugodt felület 6000 °C-ához képest. Emiatt a hőmérsékletkülönbség miatt fellépő kontrasztkülönbség az oka, hogy az amúgy vörös foltokat feketének látjuk.
Kialakulásuk a mágneses tér változásaihoz köthetőek, ugyanis míg a nyugodt napfelszín mágneses tere 1 gauss erősségű, a napfoltok mágneses tere 3000 gauss körül alakul.
Ha távcsőben vagy képen nézünk egy nagyobb foltot, két élesen elkülönülő részt figyelhetünk meg. A legszembetűnőbb a középső, legsötétebb rész, az umbra, ami a folt leghidegebb része. A másik rész, az umbrát körülölelő sugaras szerkezetű, szürke színben látható penumbra. Megfigyelhetőek még olyan foltok, mely körül nem alakul ki a penumbra. Ezek a pórusok.

Napfoltok a Szerző rajzán. Bővebben a napfoltokról ezen a linken:
https://www.spaceweatherlive.com/en/solar-activity/region/12671



Figyelem!!! Soha ne nézzünk a Napba távcsővel megfelelő napszűrő nélkül!!!


A Nap aktuális felszínének képe:
https://sohowww.nascom.nasa.gov/data/realtime/hmi_igr/1024/latest.html

A Nap ciklikus tevékenysége a gazdaság több területét is befolyásolja. Erről szól egy részletesebb írás ezen a linken:
http://www.planetology.hu/napfoltok-es-a-buza-ara/


Források:
Magyar Csillagászati Egyesület – Amatőrcsillagászok Kézikönyve
https://www.nasa.gov/press-release/solar-cycle-25-is-here-nasa-noaa-scientists-explain-what-that-means/
https://www.nasa.gov/feature/goddard/2020/what-will-solar-cycle-25-look-like-sun-prediction-model
https://www.weather.gov/news/201509-solar-cycle


Felszínformák elnevezései bolygókon és holdakon

Sinus Iridum, Mare Imbrium, Hellas Planitia, Olympus Mons, Valles Marineris… megannyi idegen név, idegen égitesteken, de mit takarnak az egyes felszínalaktani formák elnevezései? Mi a Sinus? Mi a Valles? E cikkben felsoroljuk Naprendszerünk szilárd felszínű égitestjeinek legfőbb felszínformáit. Az alábbi felsorolás eredetijét a Nemzetközi Csillagászati Unió (IAU) egyik kiadványa (Transactions No. XVI-XVIIB) jelentette meg, melyet aztán a Föld és Ég c. folyóirat 1981 decemberi száma, később Hédervári Péter: Ismeretlen (?) Naprendszerünk c. 1986-os műve is átvett. E gyűjteményt továbbá kiegészítettük azon főbb felszínforma-típusokkal is, melyek a forrásban még nem szerepelnek, emellett aktualizáltuk is a felsorolást.

Az adott képződménytípust először egyes (majd többes) számú nevén olvashatjuk, mely után a magyar elnevezést (egyes esetekben az adott felszínformák nem rendelkeznek állandó magyar névvel, ezeket kérdőjellel láttuk el) és egy rövid felszínalaktani leírást is találunk.

Arcus (Arcus) – ív
– ívelt alakzat a Titanon

Astrum (Astra) – asztrum
– sugaras mintázatú terület a Vénuszon

Catena (Catenae) – kráterlánc
– kisebb, általában közel azonos méretű kráterek láncolatszerű sora

Az Enki Catena a Ganymedes felszínén
Fotó: NASA/JPL/Galileo. Forrás: Wikipedia

Cavus (Cavi) – üreg
– általában csoportosan előforduló, szabálytalan alakú, meredek falú mélyedések (katlanok)

Chaos (Chaosi) – káosz
– szabálytalan domborzatú, erősen lepusztult kiemelkedések zónája

Chasma (Chasmata) – kanyon
– hosszan kiterjedő, meredek falú, mély völgy

Collis (Colles) – domb
– kisméretű hegy vagy domb

Corona (Coronae) – korona
– kör vagy ellipszis formájú alakzat a Vénuszon, mely részben vagy teljesen koncentrikus formákból áll: általában egy perem és egy ezt körülvevő, árokszerű mélyedésből áll

Crater (Crateris) – kráter
– kifejezetten kör alakú, vulkáni vagy becsapódási eredetű mélyedés

A Herschel-kráter a Szaturnusz Mimas nevű holdján
Fotó: NASA/Cassini. Forrás: Wikipedia

Dorsum (Dorsi) – gerinc
– hosszan elnyúló, szabálytalan alakú, egyenes vagy görbült vonalú kiemelkedés

Facula (Faculae) – fáklya?
– világos folt

Farrum (Farra) – farrum?
– palacsintaszerű vulkanikus képződmények a Vénuszon

A Carmenta Farra palacsinta-szerű formái a Vénuszon
Fotó: NASA/JPL/Magellan. Forrás: Wikipedia

Flexus (Flexus) – hát
– nagyon alacsony, enyhén ívelt, hullámos mintázatú gerinc (a latin szó hajlatot jelent)

Fluctus (Fluctus) – lávafolyás?
– több száz kilométer hosszú lávafolyások, melyeknél a láva a forrástól tartósan egy irányba folyt

Flumen (Flumina) – csatorna?
– csatorna a Titan-on, mely folyadékot szállíthat

Fossa (Fossae) – árok
– hosszú, keskeny, sekély mélyedés(ek), lehetnek egyenesek vagy görbültek

Insula (Insulae) – sziget
– sziget vagy szigetcsoport, melyet folyékony anyagú terület (tenger vagy tó) vesz körül részben vagy teljesen

Labes (Labes) – csuszamlás?
– nyelv-formájú (föld)csuszamlás

Labyrinthus (Labyrinthi) – labirintus
– egymást keresztező, keskeny mélyedések, völgyek rendszere (pl. kereszttöréses rendszer)

A Labyrinthus Noctis, a Mars legnagyobb labirintusa
Fotó: NASA/Viking 1. Forrás: Wikipedia

Lacuna (Lacunae) – tómeder?
– szabálytalan formájú mélyedések a Titanon, melyek megjelenésüket tekintve kiszáradt tómedrek lehetnek

Lacus (Lacus) –
– kisebb méretű, szabálytalan körvonalú, sötét felszínű sík terület a Holdon, Merkúron, Marson (valamint pl. a Titanon – a szerk.)

Lenticula (Lenticulae) – lencse?
– kis méretű, sötét foltok az Europa felszínén

Linea (Lineae) – vonal
– sötét vagy fényes, keskeny, hosszan elnyúló képződmény, amely mind egyenes, mind görbült vonalú lehet

Macula (Maculae) – folt
– sötét, esetleg szabálytalan alakú képződmény

A Mordor Macula, a Charon sötét foltjának nem hivatalos elnevezése
Fotó: NASA/New Horizons. Forrás: Wikipedia

Mare (Maria) – tenger
– kerekded körvonalú, nagy kiterjedésű, sötét felszínű, sík terület (megjegyzés: néha azonban elnyúlt alakú, pl. a Mare Frigoris – H.P.)

Mensa (Mensae) – táblahegy
– lapos, sík tetejű és meredek, éles peremmel, körülhatárolt kiemelkedés (a latin szó “asztal”-t jelent)

Mons (Montis) – hegy
– a környezetéből határozott talapzattal kiemelkedő, viszonylag kis területű, minden oldalán lejtővel határolt, zárt térszíni kiemelkedés. Hegység: viszonylag nagyt területű, zárt, de völgyekkel és medencékkel jól tagolt, környezete fölé magasodó földrajzi egység. (Megjegyzés: az eredeti szövegben a meghatározások hiányoztak: az itt közölteket a Természettudományi Lexikon-ból vettük át – H.P.)

A marsi Olympus Mons, Naprendszerünk legmagasabb vulkánja
Fotó: NASA/Viking. Forrás: Wikipedia

Oceanus (Oceani) – óceán
– a Hold óriási kiterjedésű, sötét felszínű sík területe (csak az Oceanus Procellarum, azaz a Viharok Óceánja viseli ezt az elnevezést)

Palus (Paludius) – mocsár
– a Hold kisebb kiterjedésű, szabálytalan körvonalú, sötét mare- és fényesebb “szárazföldi” anyagot egyaránt tartalmazó területe(i)

Patera (Paterae) – sekély kráter
– szabálytalan vagy összetett szerkezetű, hullámos falú-peremű, sekély kráter (a latin szó eredetileg áldozati lapos “csészé”-t jelent)

Planitia (Planitiae) – alföld, medence
– sima felszínű, alacsonyan fekvő terület (medence, mélyföld)

Planum (Plani) – fennsík
– magasan fekvő, sima felületű terület, plató

Plume (Plumes) – jégvulkán?
– a vulkánok azon típusa a főként jégből álló törpebolygókon és holdakon, melyek olvadt kőzet helyett vizet, ammóniát vagy metánt lövellnek ki

Promontorium (Promontorii) – előhegység, hegyfok
– világosabb anyagú kiemelkedés a Holdon, amelyet sötétebb anyagú mare-területek vesznek körül (“félsziget“)

Regio (Regiones) – terület
– olyan nagyméretű vidék, amelyet fényvisszaverő képességének vagy színének elütő volta egyértelműen elhatárol a környezetétől

Reticulum (Reticula) – háló?
– háló(zat)szerű mintázatok a Vénuszon

Rima (Rimae) – hasadék
– keskeny, hosszú bemélyedés, repedés vagy lávacsatorna

Rupes (Rupis) – szakadék
– egyenes vonalú, meredek falú, lépcsőszerű leszakadás

A 20 kilométer magas Verona Rupes, a Naprendszer legnagyobb
ismert sziklafala az Uránusz Miranda nevű holdján
Fotó. NASA/JPL/Voyager 2. Forrás: Wikipedia

Saxum (Saxa) – szikla
– nagyobb méretű, határozottan elkülönülő sziklák az aszteroidákon

A (101955) Bennu aszteroida, felszínén több, jól elkülönülő sziklával (saxummal)
Fotó: NASA/OSIRIS-REx. Forrás: Wikipedia

Scopulus (Scopuli) – partfal
– olyan meredek falú leszakadás, amelynek peremvonala nagyon kanyargós vagy félszigetszerű

Serpens (Serpentes) – hullám
– elnyúlt, hosszában hol bemélyedő, hol kidomborodó, szinuszgörbe-szerűen hullámzó képződmény

Sinus (Sinus) – öböl
– a Hold mare-területeihez kapcsolódó, kisebb, sötét felszínű terület, amely beékelődik a mare-t határoló fényesebb, “szárazföldi” vidékbe (Megjegyzés: az öblök olyan kráterek, amelyeknek a medence felőli sáncfala hiányzik, valószínűleg azért, mert a medencéket elöntő bazaltos láva beolvasztotta és megsemmisítette azt – H.P.)

A Sinus Iridum a Hold felszínén. Kétoldalt egy-egy, félszigetként
beékelődő Promontorium, valamint a Mare Imbrium
Fotó: NASA/LRO. Forrás: Wikipedia

Solitudo (Solitudinis) – solitudo
– a Merkúr klasszikus, sötét árnyalatú (kis albedójú) képződményei, a szó eredeti jelentése: “hiány“, “magány” (ezt az elnevezést már nem használjuk – a szerk.)

Sulcus (Sulci) – barázda
– hosszan elnyúló, csaknem párhuzamos barázdák, kiemelkedések és mélyedések rendszere

Terra (Terrae) – föld, szárazföld
– hullámzó vagy durva felszínű, magasan elhelyezkedő, igen nagy kiterjedésű terület, hegyvidék (földi értelemben: szárazföld, kontinens)

Tessera (Tesserae) – mozaik
– csempeszerű, poligonális mintázatú felszín a Vénuszon

Tholus (Tholi) – domb
– különálló, kúp alakú domb vagy kisebb hegy (a latin eredeti kupolát jelent)

Unda (Undae) – dűne
– általában elnyúlt formájú domb, melynek anyaga elsősorban homok, ritkábban kavics vagy jég

Vallis (Valles) – völgy
– kanyargó, hosszan elnyúló mélyedés, esetleg elágazásokkal

A Valles Marineris, a Mars és a Naprendszer legnagyobb kanyonrendszere
Fotó: NASA/JPL/Viking 1. Forrás: Wikipedia

Vastitas (Vastitatis) – síkság
– a bolygó igen nagy részére kiterjedő lapos, sík vidék



Források:

Hédervári Péter: Ismeretlen (?) Naprendszerünk, 1986

Hargitai Henrik, Kozma Judit, Kereszturi Ákos, Bérczi Szaniszló, Dutkó András, Illés Erzsébet, Karátson Dávid, Sik András: Javaslat a planetológiai nevezéktan magyar rendszerére

Gazetteer of Planetary Nomenclature

Encyclopaedia of Planetary Landforms, 2014

Az augusztusi meteorraj, a Perseidák

Szerző: Balázs Gábor

Augusztus csillagászati szempontból egy igen kedvező hónap. Egyre hosszabbak az éjszakák, a napok többségében derült ég jellemző jó nyugodtsággal, nem kell fázni a távcső mellett és ekkor érkeznek a Perseidák. Nemcsak ebben az időszakban láthatunk meteorokat. Az összes meteorra kivetíthetők a következő állítások. A meteorjelenséget egy, az űrben mozgó 1 méter átmérő alatti kőzettest, másnéven meteoroid okozza, amikor belép a légkörbe. A Perseidák meteoroidjai egy 130 éves keringési idejű üstököstől, a 109P/Swift-Tuttle-től származnak. Amikor a szemcse belép a légkörbe, 150 km magasan a légköri súrlódás miatt felizzik és gerjeszti a körülötte lévő részecskéket ezzel több kilométer hosszú ioncsóvát létrehozva. Ezt az ioncsóvát látjuk, mint fényjelenséget. Ennél a témánál előjön egy fontos szó, a radiáns. A radiáns az a pont, amelyből a meteorok látszólag kiindulnak. Ennek a meteorrajnak a radiánsa a Perseus csillagkép területén van, innen kapta a nevét.

A Perseida meteorraj radiánsa, a Perseus csillagkép. Kép: Stellarium

A maximum augusztus 12/13-a kora hajnalán van. Ezen az estén az IMO (International Meteor Organization) adatai szerint óránként akár 110 db-ot is megfigyelhetünk, de ez csak egy elméleti érték. A raj tagjai július 17 és augusztus 24 között jelentkeznek, ezért a maximum előtt és után néhány nappal is megfigyelhetőek szép számmal. A rajra továbbá a fényes tagok és kitörések a jellemzőek.

A Perseidák kitörései. Forrás: meteorflux.org

A perseidák közül néhány akár a Vénusznál (-4 magnitúdó) is fényesebb lehet. Ezeket a meteorokat tűzgömböknek nevezzük.

-7 magnitúdó fényességű tűzgömb 2018 szeptember 28-án. Bővebben: https://mcse.imo.net/members/imo_view/report/175252

Csillagaim.hu – csillagtérképek személyre szabva

Emlékszel, milyen gyönyörűek voltak a csillagok?

Előfordult már Veled, hogy azon gondolkodtál, mi lehet megfelelő ajándék egy számodra fontos személynek? Olyan ajándék, mely nem csak szép, maradandó, hanem egyedi, és személyre szóló is egyben?

csillagaim.hu ötlete is pontosan ilyen gondolat alapján született. Az öröm, melyet egy ilyen ajándékkal okoztunk, arra ösztönzött bennünket, hogy Neked is lehetővé tegyük ugyanezt.

Örökítsd meg a pillanatot, készíts egyedi csillagtérképet!

Csak annyit kell tenned, hogy megadod a helyszínt és időpontot, majd beállítod a térkép megjelenését. Nálunk nincsenek korlátok, előre beállított sablonaink mellett teljesen szabadon választhatsz színösszeállításokat.

Szeretnéd látni a Tejutat, vagy a bolygókat is? Csak rajtad múlik, hogy milyen égi objektumok legyenek a térképeden.

A képeket 200g/m² papírra, digitális nyomtatóval készítjük, majd gondosan csomagoljuk. 

Forrás: csillagaim.hu

A C/2020 F3 (NEOWISE) Magyarországról

Szerző: Balázs Gábor

Az északi félteke nem bővelkedik a szabadszemes üstökösökben, legutoljára 1997-ben a C/1995 O1 (Hale-Bopp) volt mindenki számára hasonlóan látványos jelenség, de 23 év után 2020-ban megérkezett az „ikertestvére”.

C/1995 O1 (Hale-Bopp) az 1997-es feltűnése idején (bal oldalt). Forrás: ESO. Jobb oldalt a C/2020 F3 (NEOWISE) Majzik Lionel felvételén 2020 július 13-án hajnalban

A 2020-as évben eddig összesen 3 üstököst vártunk szabadszemesnek vagy legalább is binokulárral észlelhetőnek, de csak az utolsó, a C/2020 F3 (NEOWISE) élte túl megpróbáltatásait.
Felfedezése 2020. március 27-én történt a NASA Wide Field Infrared Survey Explorer (WISE) űrteleszkópjának Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) programja által.

Az üstökösök neve több adatból tevődik össze. Mivel az eddigi számítások szerint 6-7 ezer év a keringési ideje, ezért a nem periodikus üstökösök közé sorolják, melyek azonosítója a C betű. Nevének következő része a felfedezés évéből és egy félhónapot jelölő betűből áll. Az üstököst 2020. március második felében harmadikként fedezték fel, ezért 2020 F3. Nevének utolsó tagja pedig a felfedezője, a NEOWISE.

Az első kép a NEOWISE üstökösről 2020. március 27-én készült (több hőérzékeny infravörös kép kompozíciója). Fotó: NASA/JPL-Caltech

Legközelebb a Naphoz (perihélium) július 3-án volt. Ekkor a Merkúr pályájánál is közelebb, 0,295 CsE (44,25 millió km) távolságra közelítette meg csillagunkat. Az őt ért fokozatosan növekvő, majd a perihélium során ráeső rendkívül nagy hőhatásoknak köszönhetően rengeteg por és gáz szabadult fel magjából, lehetővé téve a rendkívül hosszú és látványos ion- és porcsóva létrejöttét.

A közeledő üstökös. Forrás: Spaceweather.com
A por- és az ioncsóva. Fotó: Majzik Lionel

Áttérve a megfigyelésére, először a koránkelők csodálhatták meg, majd cirkumpoláris lett, végül az esti észlelése lett a kedvezőbb.

A C/2020 F3 (NEOWISE) útja a hajnali égen 3:55-kor
A C/2020 F3 (NEOWISE) útja az esti égen 22:55-kor

Már távolodott a Naptól, amikor először megpillantották. Kezdetekben a hajnali észlelés volt az egyetlen lehetőség, ezért kométánk története észlelési szempontból 2020. július 4-én kezdődött, ugyanis ezen a hajnalon már elég távol volt a Naptól, hogy észlelhető és fotózható lehessen. Az elsők között volt Majzik Lionel képe, mely 03:54-kor készült Tápióbicskén.
Ezen a hajnalon 1,5 magnitúdó volt, de még látszólag közel volt csillagunkhoz, így csak az üstökös legfényesebb részeit, a magját és a porcsóvájának ehhez igen közel eső részét lehetett lencsevégre kapni.

A C/2020 F3 (NEOWISE) Majzik Lionel felvételén Tápióbicskéről. Kamera: Nikon D3300 + AF-S DX Nikkor 55-300mm f/4,5-5,6G VR

Az első képeket meglátva kedvet kaptam észleléséhez így első, saját megfigyelésem július 5-én hajnalban történt. Ekkor azt tapasztaltam, hogy nehéz szabad szemmel megtalálni, mivel még elveszik a kelő Nap fényében (ezt az előző kép is igazolja), de a magja már ekkor csillagszerűen látszott, igaz egyértelműen nem tudtam megmondani, hogy pont az az üstökös. 10×50 binokulárral kezdtem keresni és innentől fogva ez lett a fő műszer megfigyeléseimnél, viszont az alábbi kép 80/910 akromáttal készült 3:59-kor. A magja fényes, a porcsóva kivehető.

A C/2020 F3 (NEOWISE) 80/910 akromáton keresztül a szerző felvételén, 2020. július 5-én
3:59-kor. Feldolgozás: Schmall Rafael

A következő nap, július 6-án 3:28-kor Kecskés Juliannával közösen fotóztam először tükörreflexes (DSLR) fényképezőgéppel. Ekkor már szabad szemmel kivehető volt a csóva.

A C/2020 F3 (Neowise) Kecskés Julianna és Balázs Gábor felvételén, 2020. július 6-án hajnalban 3:28-kor Kamera: Nikon D5300 + Nikkor 75-200 mm teleobjektív

Július 8-án hajnalban igen nagy világító felhők társaságában volt látható. Rendkívül különleges felvételek születtek.

A C/2020 F3 (NEOWISE) Balatonmáriafürdőről július 8-án 3:32-kor Schmall Rafael felvételén

Július 10-én már 4 fokos csóva volt szabad szemmel látható.

A C/2020 F3 (NEOWISE) a szerző felvételén, 2020. július 10-én 3:13-kor

Első esti észlelését Schmall Rafael végezte július 10-én este 22:01-kor a Zselici csillagparkból.

Az első esti égen készült fotó a C/2020 F3 (NEOWISE) üstökösről Schmall Rafael felvételén, 2020. július 10-én

Az első általam végzett esti észlelése július 12-én este 21:46 történt. Ekkor még a hajnali láthatósága volt a jobb. Ezen az estén szabad szemmel alig volt látható, kereséséhez binokulárra volt szükségem.

Magyarországon július 13-tól lett cirkumpoláris, ami azt jeleni, hogy nem kerül a horizont alá, így egész éjjel megfigyelhető volt.

Július 14-étől az esti láthatósága már jobb, mint a hajnali. 21:58-kor már szabad szemmel lehetett látni.

Július 15-én ismét az esti égen fotóztuk. Ekkor az ioncsóvája számítások szerint 60 millió (!) km volt. Érdekességképp a Nap-Föld távolság 150 millió km.

A C/2020 F3 (NEOWISE) 5 km átmérőjű magja, 2020. július 15-én este; Távcső: 300/1600 Newton; Mechanika: Fornax 51; Kamera: Canon 700d; Fotó: Várady Ferenc
A C/2020 F3 (NEOWISE) a szerző felvételén július 15-én este; Kamera: Canon 700d + TAMRON 18-200mm F/3.5-6.3 DI II VC(C) Objektív 137 mm-en

Mivel cirkumpoláris július 16-án, ezért 00:23-kor is észleltem, fotóztam. Ekkor a horizonthoz való közelsége miatt elveszett a fényszennyezésben, így szabad szemmel éppen megtalálható, de binokulárral ekkor is könnyen megfigyelhető és látványos volt.

C/2020 F3 (NEOWISE) július 16-án 0:23-kor a szerző felvételén; Kamera: Canon 700d + TAMRON 18-200mm F/3.5-6.3 DI II VC(C) Objektív 57 mm-en

Július 23-án járt a Földhöz legközelebb, 0,692 CsE-re, ami átszámítva 103,8 millió km. Ekkor már az első észlelésekhez képest 2,1 magnitúdót halványodott, tehát 3,6 magnitúdó volt az aznap esti látszó fényessége.

Forrás: astro.vanbuitenen.nl

Bár folyamatosan halványodik (átlagosan 10 óránként 0,1 magnitúdót), távcsövekkel még mindig megfigyelhető. Augusztus 11-ig binokulárral észlelhető, majd később csak nagyobb távcsövekkel. Az alábbi kép egy 80/910-es lencsés távcsőben vizuálisan látottakat próbálja visszaadni.

Az üstökös 80/910 akromáton keresztül 2020.07.27 22:26-kor

Akik binokulárral felkeresnék, az alábbi térkép segítséget nyújthat:


Források:
Stellarium
astro.vanbuitenen.nl
nasa.gov

A július 5-ei éjszakai világító felhők története

Szerző: Balázs Gábor

Minden évben beköszönt az a másfél hónapos időszak, amikor van esély éjszakai világító felhők, más néven poláris mezoszférikus felhők kialakulására és ennek megfelelően július 5-én este igen nagy NLC (Noctilucent Cloud) jelenséget figyelhettünk meg.

Maga a jelenség a légköroptikához tartozik és a mezoszférában (a légkör 50-90 km közötti rétege) lévő felhők porszemcsékhez tapadt 40-100 nanométer átmérőjű vízjég kristályai a már horizont alatt tartózkodó Nap fényét verik vissza. Kialakulásukra június közepétől július végéig számíthatunk. Megfigyelésükre naplemente után és napkelte előtt egy-másfél órával van lehetőség. A jelenség akár egy órán keresztül is látható.
Egy személyes megjegyzés: harmadik éve figyelem az NLC-ket, de mondhatom, ez volt eddig a legnagyobb. Az alábbi képen jól megfigyelhetők a felhőzet változásai.

A jelenség július 6-án hajnalban, a C/2020 F3 (NEOWISE) üstökös fotózása közben is megfigyelhető volt, igaz nem olyan szinten, mint július 5-én este. Ezt követően még július 8-án és 10-én hajnalban örvendeztette meg a koránkelőket és az üstökösmegfigyelőket.

NLC július 6-án 3:28-kor. Fotó: Kecskés Julianna és Balázs Gábor
A C/2020 F3 (NEOWISE) üstökös NLC-k társaságában Balatonmáriafürdőről július 8-án hajnalban Schmall Rafael felvételén
NLC július 10-én 03:09-kor a szerző felvételén

Tavaly, 2019. június 21-én szintén volt látványos NLC-jelenség ekkor általánosságban írtam róluk, mely írásom ezen a linken megtekinthető.

Meteoritok azonosítása

Szerző: Kereszty Zsolt

Bevezetés

Az alábbi útmutató célja, hogy segítsen a meteoritnak gondolt kőzet, tárgy házilagos, egyszerű módszerekkel történő beazonosításában, hogy az valóban, a Világűrből érkezett meteorit-e vagy földi kőzet esetleg emberi műtermék. Összefoglaló, azonosítást segítő leírásom nem ad 100% pontos eredményt, ilyet ne várjon tőle senki, kizárólag tájékoztató jellegű és nem pótolja a felkészült meteorit szakértő és felszerelt laboratórium vizsgálatait. Ne feledjük, a meteorit Földünkön nagyon-nagyon ritka természetes eredetű objektum, két egyforma nincs belőle és még az itt leírtakhoz képest is lehetnek egyedi eltérések és változatok. A szakszerű és megnyugtató eredményű meteorit azonosításhoz erre felkészült és az azonosításban nagy gyakorlattal rendelkező laboratórium és szakember részletes és műszeres vizsgálata szükséges, olykor még tapasztalt geológus szakember is tévedhet az azonosításban!


A fogalmak:

A meteorit a világűrből érkező természetes objektum, ami a Föld (vagy egy másik égitest, például a Hold, a Mars stb.) felszínével való ütközéskor nem semmisül meg, túléli a zuhanást és eléri a felszínt. Amíg az űrben mozog és 1 méteresnél kisebb, meteoroidnak nevezzük. Amikor belép a légkörbe, a légellenállás okozta súrlódás hatására felforrósodik, plazma-csatornát és tűzgolyót létrehozva elektromágneses sugárzást, pl. fényt bocsát ki, esetleg hangot. A jelenséget magát meteornak vagy közismertebb nevén hullócsillagnak hívjuk. A tűzgömb olyan meteor, melynek látszó fényessége meghaladja a Vénusz legnagyobb fényességét, ami -4 magnitúdó (jele: mg). Ezek általában kiemelkedő fényjelességgel, esetleg hangmorajlással járnak. A bolida olyan felrobbanó tűzgömb, ami jelentős, általában hangrobbanáshoz hasonlító jelentős hanghatással jár, mely akár sok sok kilométerre is elhallatszik. A meteoritokat adó tűzgömbök, szinte minden esetben bolidák, fényességük kimagasló, általában jóval meghaladja a telihold fényességét -12 magnitúdót. Ha a bolida fényessége meghaladja a -17 mg-t akkor szuperbolidának nevezzük, ezek szinte minden esetben meteoritot hagynak maguk után.

A meteoritokat a Nemzetközi Meteoritikai Társaság digitális adatbázisa a Meteoritical Bulletin tartja nyilván, e sorok írásakor kb. 62000 db-ot katalogizáltak. Ebből mindössze kb. 1300 db az olyan, aminek hullását szemtanúk látták, megörökítették, dokumentálták, az összes többit találták további ismert hullási adat, időpont, egyéb nélkül. A meteoritok terület arányosan hullanak, nincsen ismert  kitüntetett hely. Olyan viszont van ahol jól megőrződtek, konzerválódtak, ezek a száraz sivatagok és az Antarktisz. Legtöbbjük ugyanis a földi nedvesség hatására változó mértékben de mállik, sőt egyes lazább típusok egyszerűen elporladnak. Legjobban a vasmeteoritok anyaga marad meg, legkevésbé a széntartalmú és laza szerkezetű ún. szenes kondritoké. Emiatt – érdekes ellentmondás, de – az ismert összes meteorit össztömegének 90 %-át a vasmeteoritok adják.

A meteoritokat mindig a hullási/találási hely földrajzi neve alapján nevezik el, ismert emberről, nevezetességről, stb. nem. Ha egy helyen több meteoritot is találnak eltérő időpontokban, akkor a nevet általában egy szám vagy betű követi (pl. Dimmitt(a) vagy a második esetben már Dimmitt(b).). Szokás még, hogy a sivatagos Észak-nyugat Szahara nagy számban talált meteoritjai esetén, amikor nem ismert pontosan a találási hely de a nagyjábóli régió igen, akkor az NWA betűk után egy sorszámot tesznek és ez lesz a meteorit neve pl. NWA 12692.

A meteoritokat legfontosabb adataik megadásával tartják nyilván, ezek a következők: név, hullási/találási történet, hely, időpont, típus, teljes ismert tömeg (angolul Total Known Weight, rövidítve TKW), fizikai leírás, összetétel, egyéb. A mai magyarországi határainkon belül jelenleg mindössze 8 db magyar meteoritot ismerünk, kezdve az első, 1857-ben hullott kabai meteorittól a 2016-ban talált Kölked nevű kondrit meteoritig.


A meteoritokat korábban három kategóriába sorolták:

  • kőmeteoritok olyan kőzetdarabok, melyek főleg változó mennyiségű vas-nikkel szemcsékből, szilikát ásványokból állnak, ezek az összes hullás 94,5 %-át adják

  • vasmeteoritok főleg vas-nikkelből állnak, az összes hullás 4,5 %-át adják

  • kő-vas meteoritok kb. 50-50 % vasnikkel és olivin vagy szilikátos anyagok keveréke, 1 %

A modern meteorit osztályozási módszerek – az egyszerű kategóriába sorolás helyett – már figyelembe veszik a meteorit eredeti származási szülőégitestjének anyagát, annak átalakulási mértékét, kémiai és izotóp összetételét és ásványtani szempontokat.


A meteoritok modern, korszerű szempontú csoportosítása

A tudomány és a mérési módszerek, eszközök egyidejű fejlődésével Dr. John T. Wasson 1974-ben egy még részletesebb és egységes rendszerbe foglalt osztályozást vezetett be, amit napjainkban is használunk. Ő nem típusokban gondolkodott, hanem a meteoritok szülőégitestjének fejlődéstörténetébe illesztette az egyes meteoritokat. Így megkülönbözetett eredetileg, kevésbé át illetve felmelegedett anyagú ősi kiségitestből származó meteoritokat, amit differenciálatlan (nem átalakult) meteoritoknak nevezett.

Ide tartoznak az eredetileg nagyon kicsi méretű  – pár százméteres esetleg 1-2 km-es -, alig átmelegedett szülőégitest maradványok a széntartalmú szenes kondrit meteoritok, típusaik, jelük: CI, CV, CM, CR, CH, CB, CK, CO, C-ung (pl. az 1857-es magyar Kaba CV3).

A már nagyobb – pár tucat esetleg száz km-es – szülőégitestek maradványai, az “átsült” kőzet anyagot adó normál vagy közönséges kondritok, típusaik, jelük: H, L, LL (pl. Csátalja H4, Mike L6), az ensztatit kondritok (EL, EH) és az egzotikus de egyben ritka kondrit típusok (rumuruti, kakangari) illetve a primitív akondritok képviselői (akapulkóit, brachinit, lodranit, ureilit, winonait). Ezen kiségitestek csillagászati méretskálán át nézve igen kicsinyek voltak, anyaguk csak kissé melegedett fel (szenes kondritok: 50-200 C) illetve a csak a normál kondritok esetén tudott szinte “átsülni” (600-1200 C) a szupernóvákból származó Al26 illetve Fe60 rövid felezési idejű radioaktív izotópok fűtésétől, ütközési folyamatokból származó impakt hőenergiától, esetleg a kisebbek esetén a víz és szilikátok exoterm reakciós energiájától. A szakemberek azt gondolják, hogy ezen meteoritok képviselői őrizték meg legjobban a preszoláris (naprendszer keletkezése előtti) anyagszemcsék eredeti állapotát.

A másik nagy csoport, a differenciált jellegű, azaz teljesen átolvadt anyagú ősi szülőégitestek, amik átmérője akár 1000-1500 km-es is lehetett, magjuk akár 2000 C fok fölé is felmelegedhetett, így anyaguk teljes mértékben átolvadt, zónásan szétszeparálódott, szaknyelven differenciálódott. A nehezebb sűrűségű vas-nikkel szinte lefolyt a magba, létrehozva ott a vasmeteoritok zónáját, a bazaltos átolvadt köpenyanyag pedig az akondritokat. A kettő határán jöhettek létre a ritka szépségű különleges kő-vas meteoritok. Az ősi kiségitest anyaga és  az ezekből származó meteoritok szövetszerkezete nem mutat kondritos jelleget ezért nevük: akondritok. Képviselői a vasmeteoritok, kő-vas meteoritok, a vestai eredetű HED meteoritok, a holdi, marsi meteoritok és a tovább már nem besorolható akondritok. Ez röviden a ma használatos Wasson-féle meteorit osztályozás lényege.

A meteoritok típusai a mai modern osztályozás alapján
A meteoritok származás alapján történő besorolása

A meteoritok egy másik szempontú csoportosítása

  • szemtanús hullások, valaki(k) látta(ák) – angolul “falls” 

  • a felszínen megtalált meteoritok – itt nincs feljegyzés, dokumentum a hullásról – angolul “finds”

  • meteorit párok – azonos hullás, de időben, később is találnak belőlük, akár többször is

  • antarktiszi meteoritok – az Antarktsz valójában száraz “jégsivatag”, jól konzerválódnak itt

  • forró sivatagi eredetűek – pl Szahara, Omán – szintén jól konzerválódnak


Szemtanús meteorit hullások (angolul “witnessed fall”):

Ezek olyan nagyon ritka hullások, melyeket egy vagy több személy látta, a feljegyzések, dokumentumok fennmaradtak vagy a mai kor kamera rendszerei dokumentáltan és igazoltan (!) megörökítették. Ezen sorok írásakor, mint említettem kb. 1300 db ilyet ismerünk 1492 – az első Ensisheim-i meteorit – óta, ami eltörpül a mai ismert és katalógusba vett kb. 62 000 db meteorit mellett, mindössze 2 %. Földünkön éves szinten manapság kb. 8-15 db ilyen meteorit hullás várható, vannak évek amikor kevesebb és van amikor több. Léteznek a még ritkább un. “hammer fall” hullások, amikor a meteorit valamibe vagy valakibe csapódik (leírtak már emberbe, kutyába, tehénbe, lóba, házba, autóba, hajóba, postaládába, stb. való becsapódást is), nyilván az ilyen hullásokat a legkönnyebb megtalálni, de hát ezek statisztikailag szinte “nem is létező”.

A szemtanús hullások legtöbbje sok-sok meteorit darabot produkál, ritkább amikor csak egy db esik le. Ha statisztikailag tekintjük egy hullás átlagos tömegét, akkor jó közelítéssel mondható, hogy a teljes Ismert tömeg  egy-egy hullásnál 67 %-os valószínűséggel 0,5-15 kg tartományba esik (természetesen ismerünk néhány tíz gr-os és 26 tonnás szemtanús hullást is). Az évszakos statisztikát vizsgálva, érdekes hogy a tavaszi és nyári időszak, mintha több meteorit hullás produkálna meg kell jegyezni, hogy ez csak a 2000-es évektől üzemben álló modern tűzgömb figyelő kamerarendszereink által biztosított és pontosabb pályaszámítást lehetővé tevő adatok szerint kalkulálható, viszonylag kevés (kb. 100 db) adatpárból).

Vizsgáljuk meg a szemtanús hullások meteorit típusonkénti megoszlását. Az alábbi ábrákon látható, hogy a kondrit meteoritok adják az elsöprő többséget, kis túlzással mondható, hogy minden 10 hullásból kb. 9 db kondrit lesz. Máshogy és eltúlzóan fogalmazva, ha hullik meteorit az szinte mindig kőmeteorit. A megmaradó 10 %-ot fele-fele arányban képviselik a vasmeteoritok és az akondritok. Elenyésző a kő-vas meteoritok aránya.

Az arány teljesen más ha a talált (vagyis a nem szemtanús) meteoritokat is nézzük, ebben az esetben még több lesz a kondrit meteorit! Érdekes ellentmondás, hogy az összes ismert meteorit tömegének 90 %-át a vasmeteoritok adják és maradék az összes többi. Vagyis a lehullott, talált meteortok közül bár a vasmeteorit nagyon ritka típus, viszont ezek adják az ismert meteoritok többségét, tömeg (“súly”) szerint. 

Az említett statisztikák:


A talált meteoritok (szemtanú nélküli hullások):

Az ilyen meteoritra egyszerűen valaki csak rábukkan, hullásuk időpontja, részletei egyáltalán nem vagy csak nagyon bizonytalanul ismert, szemtanúk nincsenek. Földi koruk (az az idő amit hullás óta eltelt), néhány évtől a több ezer évig terjedhet. Éppen ez adja a problémát, ugyanis a földi erózió, ideértve a nedvességet, szelet, hőmérséklet ingadozást, egyéb kémiai, fizikai, geológiai módosító hatásokat, emberi tevékenység hatásait – műtrágyázás, egyéb – különböző mértékben hat a meteorit felszínére és belső szerkezetére. Szaknyelven ezen hatások összességét hívják mállásnak, angolul “weathering”. Általában mondható, hogy az európai nedvesebb időjárás miatt, már néhány (!) nap vagy hónap elegendő, hogy a frissen hullott meteorit felszíne oxidálódni kezdjen. Az eredetileg szép fekete olvadási kéreggel borított meteorit felszíne oxidálódni kezd és vörösessé válik. Ez először a meteorit repedezett olvadási kérgének hajszál-repedéseiben jelenik meg, majd egyre bentebb akár mm-es mélységben is behatol. Évek alatt a meteorit az avar, fű, mezőgazdasági növények alá kerül és egyre jobban lesüllyed, ezután már csak igen nagy szerencsével és/vagy fémkeresővel vagy szántáskor találhatunk rá. A sok száz vagy ezer évet nedves földben eltöltött idő alatt a kőmetorit mállása idővel felőrli a mintát és csak nagyon ritka körülmények megléte esetén találhatunk meg belőle valamit. Ezek a nagyon ritka “fosszilizálódott meteoritok”, ilyenek maradványait pl. mészkőbe ágyazódva találták egyes északi országok kőbányáiban. A legtöbb esetben azonban a minta elvész a kutatók számára. A ritka akondrit vagy szenes kondrit meteoritoknál, azok lazább szerkezete miatt a fenti folyamat felgyorsul és még nehezebb ezeket sok-sok évvel a hullás után megtalálni. Ráadásul fémkereső ezeket nehezebben veszi észre a rendkívül kicsi FeNi tartalmuk miatt. Természetesen léteznek olyan hatások is, hogy a korábban felszín alá került meteorit valamilyen hatásra felszínre kerül (kimosódás, szél, emberi tevékenység, stb.) és bár régebben hullhatott, mégis a felszínen találunk rá a rozsdás, mállott felületű meteoritra.

Más a helyzet a vasmeteoritoknál. Az összefüggő tömör FeNi szerkezet miatt ezek földi mállása lassúbb, nem ritka, hogy több ezer éves vasmeteorit hullásokat sikerül felfedezni, akár több méteres mélységben is. Kérgük színe néhány év alatt rozsdabarnára, vöröses-barnára változik, lényegében a köznapi értelemben vett réteges (leveles) rozsda keletkezik rajtuk, ezt a szakirodalom “shale”-nek nevezi. Több  évszázad alatt ez a rozsdaréteg megnövekszik akár több cm-es vastagságúra. A kisebb néhány tucat gr-os régi vasmeteoritok viszont elveszhetnek.


A jövőben megtalált magyar meteoritokra vonatkozó szubjektív becslés:

Magyarország nedves környezeti zónában fekszik, -eltérően a sivatagoktól – nálunk gyakori a csapadék,  nedvesség. Ez különösen nem kedvez a kőmeteoritok anyagának, de a vasmeteoritok kérge is hamar oxidálódik. Ezt a gondolatot hazánk nedves-mállási körülményeire kiterjesztve, a régebben hullott meteoritokra a következőket várhatjuk ( ez persze nem kizárólagos előrejelzés, eltérés lehetséges ):

  • kondrit, akondrit kőmeteorit esetében: várhatóan nem grammos, nem néhány tíz grammos, hanem nagyobb – inkább több kg-os tömeggel várhatjuk őket, lásd Csátalja H4 meteorit, kb. 16 kg-os tömegével földből, szántásból előkerülve. Ez megkönnyíti a fémkeresős keresést, mert a nagyobb tömeg várhatóan jobb jelet vagy nagyobb érzékelési mélységet adhat.

  • vas- és kő-vas meteorit esetében: hasonlóan nem grammos, nem néhány tíz grammos és nem néhány cm-es mintákat várunk, hanem fél vagy akár több kg-os mintákat, különböző mértékben oxidált kéreggel és változatos formákban várunk. Ld. Szlovákiában nemrégiben előkerült egy vasmeteorit a földből, ami több kg-os volt.

Érdemes azonban meggondolni, hogy hazánk évtizedekig a “vas és acél” országa volt, ezért hatalmas mennyiségben jutott ipari fémhulladék (főleg vasipari hulladék, melléktermék de könnyűfém is) az ország teljesen lehetetlen szegleteibe is. Emiatt a terepen nagyon gyakori a kohósalak, az acélgyártási hulladék, de akár a háborús tevékenység nyomai, repeszek, lőszerek, stb. Az intézetekbe bekerült minták igen nagy százaléka ilyen – téves – minta.

A Földön talált meteoritok legtöbbje kondrit vagy akondrit, ami arányaiban sokkal nagyobb rész, mint a vas- és kő-vas meteoritoké. Nincs ez máshogy itthon sem, vagyis ha találunk itthon a jövőben meteoritot az leginkább kőmeteorit lesz semmint  vas vagy kő-vas.

Fontos dolog az is, ha valaha találunk egy meteoritot, akkor mindenképpen meg kell kutassuk a közeli és távolabbi környékét is, mert esélyes, hogy ún. meteorit szórásmezőre bukkantunk és így előkerülhetnek további példányok, mint erre számos példa ismert..


Friss hullású meteoritok általános jellemzői:

Friss hullás, az ami néhány órája, napja, hete történt. Néhány kg-ot produkáló hullás esetén a meteorit a földfelszínen található és szabad szemmel észrevehető, ezek kereséséhez nem kell fémkereső. Ritkán előfordulhat, hogy ennél nagyobb tömegű test hullik le, ami földbe fúródik, krátert üt méghozzá jól látható módon. Általában ilyeneknél a földrengés jelző obszervatóriumok mérhetik ennek jeleit, amiből kiháromszögelhető a földet érési körzet. Sok lehullott meteorit már szórás mezőt alkot, a korábban említettek szerint. Fémdetektor csak magas fű, akadályokkal teli környezet esetén szükséges, egyébként nagyon lelassítja a munkát. Speciális eset ha tóba, folyóba esik, mint a 2013-as Cseljabinszk kőmeteorit legnagyobb példánya, ilyenkor látszódik a hóba, jégbe hatolás kürtője, lékje.

A meteoritot a legtöbb esetben vonzza (kiéve marsi, holdi szuper ritka meteorit típus) a nagyon erős Neodímium mágnes (N52 típus a legjobb, kapható mágnesekkel foglakozó szakboltokban). Érdemes a mágnes felkötni egy kb félméteres cérnaszálra és figyelni, hogy a minta mellett elhúzva az kileng vagy sem. Ha igen, az jó jel. A meteorit maga nem vonzza a vasa, azaz nem mágneses, de vonzza a mágnest

A meteorit sűrűsége eltér a földi anyagokétól, mivel FeNi-t tartalmaznak, ezért általában nehezebbek azoktól. Fontos tudni, hogy azonnal hullás után nem izzanak, nem forróak, mindössze néhányról állították a szemtanúk, hogy kissé langyosak voltak és legtöbbször hideg tapintásúak, sőt egyesek deresekNem égetik, nem olvasztják meg a környezetüket. További tévhitek eloszlatása érdekében, elmondható, hogy legtöbbször nem üregesek, nem sugároznak, nem hordozzák betegségek kórokozóit sőt egyáltalán nem veszélyesek az élőlényekre, egyes ritka esetekben “füst szagúak”.


A frissen hullott kőmeteoritok (kondritok, szenes kondritok, akondritok):

Az ilyen kőmeteorit felszínét vékony, 1 mm-nél vékonyabb, fényes vagy matt fekete, esetleg barnás (de sohasem más színű zöld, piros, stb.) olvadási kéreg borítja. A kéreg gyakran apróbb-nagyobb gödröcskékkel, ún. regmagliptekkel tagolt, estenként szálas folyásnyomok láthatók rajta. A felület lehet törött, ezáltal láthatóvá válik a meteorit belső szerkezete, ami általában világos, pl. szürke színű. Benne szeplősen elszórt ezüstösen csillogó apró pöttyök, a FeNi fémfázis láthatók. Emellett  sötét ún. sokkolt erek vagy becsapódáskori megolvadások (angolul “Impact Melt” részek) is láthatók. A kőmeteoritokban gyakori ún. kondrumok pici milliméteres vagy kisebb üvegszerű ásványi gömböcskéi ritkán, de szemmel láthatók a törött részeken. Az említett színektől eltérő idegen színek nem jellemzőek, tehát idegen sárga, piros, zöld, lila, narancs szín az említett feketén, sötét barnán kívül.

A meteorit felszínét szabálytalanul elrendezett, vékony repedés hálózat boríthatja, ezek a felület lehűlésekor képződő ún. kontrakciós repedések. A repedésekben általában feltűnik a meteorit világosabb belső szerkezete. A nagyon ritkán előforduló szenes kondritok, a szén tartalom miatt belül sötétek, feketék, feketések lehetnek, apró, szabálytalan alakú fehér színű zárványokkal (CAI), a nagy többség azonban világos belső szerkezetű.

A kondrit meteorit alakja bármilyen lehet, de nagyon gyakori a szabálytalan alak, gömbölyded formákkal borítva, ritka a szép kúpos, orientált “klasszikus” meteorit alak. A meteoritot NAGYON RITKÁN határolja éles perem! Gázbuborékszerű ún. hólyagüregek viszont sohasem (hazai kohósalakoknál ez viszont gyakori, ez kizáró ok is egyben). A felület ún. elsődleges és/vagy másodlagos fekete színű olvadási kéregből áll.

Frissen hullott kondrit fekete olvadási kéreggel, kontrakciós repedésekkel
és becsapódáskori repedéssel
Cseljabinszk LL5 típusú kondrit. A fekete olvadási kéreg kissé “habos” jellegű, a törött felület világos belső szerkezetű, ami néhol vörösre oxidálódott. A meteorit akár 1-2 évet is eltölthetett nedves (eső,hó) környezetben!

Cseljabinszk LL5 típusú kondrit fekete olvadási kéreggel, a törött felületeken látható a világos belső szerkezet, enyhe vörös színű oxidációval.

A frissen hullott vasmeteoritok:

A ritka hullási események közé tartozó vasmeteorit felszínét, nagyon vékony fekete vagy kékes-fekete kéreg borítja. A vasmeteorit alakja szintén változatos, de a nagy többség gömbölyded, lekerekített élekkel, ujjbenyomódás-szerű gödrökkel, regmagliptekkel tagolt. A klasszikus repülés orientált kúpalak, folyásnyomos felszín szintén jellemző. Extrém ritka estekben átégett lyukak előfordulhatnak. A törött, olvadt felület sohasem világos, mint a kondritoknál, hanem megegyezik a meteorit sötét felszíni színével. Mivel nagyon sűrűek (magas a Fe-Ni fázis), ezért nehezek és erősen tapad rájuk a mágnes. Buborékok, belső zárvány üregek és üvegesedett olvadási kéreg nem látható. Tapintásuk kimondottam fémes jellegű és nagyon erősen tapad hozzájuk a mágnes.

Frissen hullott vasmeteorit lekerekített alakkal. Figyeljük meg, hogy az olvadási kéreg fekete, kékes színű. Jól látható a megolvadt, regmagliptes felszín.
Frissen hullott vasmeteorit. Hulláskor megolvadt alak, regmagliptekkel, a kopott éleken csillogó FeNi kibukkanással.
Tipikus repesz alakú vasmeteorit, repülés-orientált alakkal, éles folyásnyomokkal, fekete, kékes színű kéreggel. Hulláskor éles élek keletkeztek, de az orientáció alapján látszik a jellegzetes meteorit alak.

Házilag elvégezhető tesztek – meteoritikus eredet igazolására:

Az alábbiakban ismertetett tesztek nem pótolják a modern műszeres mérési eljárásokat, de segítenek abban, hogy igen nagy valószínűséggel kiszűrjük a meteoritnak gondolt mintáinkat a részletesebb vizsgálatok előtt. A professzionális szakemberektől, kutatóktól nem várható el, hogy minden, általunk meteoritnak gondolt anyagot részletesen megvizsgáljanak. Aki ragaszkodik az űrbéli eredetűnek gondolt anyagának részletesebb laborvizsgálatához annak ezt magának kell finanszíroznia. Hazánkban viszonylag kevés helyen foglalkoznak ilyennel, külföldön, elsősorban az USA-ban rutinszerű az ilyen eljárás, melynek költségei általában a több száz vagy ezer USD felett vannak. Az alábbiakban leírt sorrendben elvégzett vizsgálatokkal tapasztalatom szerint 90 % fölé tornázhatjuk a bizonyosságot, hogy valódi meteoritot tartunk a kezünkben.


1. lépés: A meteorit alakjának, külső jegyeinek vizsgálata

Mint a fentiekben láthattuk a szemtanús és a normál találású meteoritokra sajátságos külső jellemző. A lekerekített élek, regmagliptek, folyásnyomok, orientált alak, a külső felület színe, a törött felületek színe, szerkezete a fémszeplők, kondrumok – gömbcseppecskék – jelenléte, stb. kellő gyakorlat után segítik a meghatározást. A fentiekben ezt részletesen leírtam.

Kizáró tényezők a következők (eltérés lehetséges):

  • nem vonzza a mágnes (ld. még fentiek)

  • éles peremek, éles, határozott oxidáció (rozsda), éles és sűrű kráteresedés a felszínen, földi anyagok, szennyezések a minta felszínén (kőzetek, beton, fehér szilikátok, stb.)

  • gázzárványok, belső és külső üregek, buborékok jelenléte a felszínen és a belső törött felületeken, (ld még kohósalak)

  • egyenletes kitüremkedő buborékosodás a felszínen – pl. hematit

  • idegen színek jelenléte – kék, zöld, lila, piros, sárga, (ipari salak, emberi műtermék angolul ”man-made”)

  • összefüggő csillogó fémes párhuzamos szálak jelenléte – könnyűfém ötvözet

Ezen alaki és szerkezeti jellemzők összességét átlagembernek valóban nehéz felismerni, azonban a kizáró tényezők közül egy vagy több teljesülése esetén, a mintát nem érdemes tovább vizsgálni.

VALÓDI METEORITOK alaki jellemzői példákon bemutatva:

Klasszikus kúposan orientált meteorit alak, regmagliptekkel, folyásnyomokkal és fekete olvadási kéreggel. Middlesbrough L6 kondrit meteorit, 1881, Anglia.
Frissen hullott kondrit meteorit, regmagliptekkel, lekerekített élekkel, fekete olvadási kéreggel és kontrakciós repedésekkel.
Kontrasztos folyásnyomok egy kúposan orientált kondrit meteoriton.
Vékony fekete olvadási kéreg és kontrakciós repedések kondrit meteoriton (Bensour meteorit). Az élek lekerekítettek, belső törésnyomok világosak.
Vasmeteorit nagyméretű regmagliptekkel, felszíni mállási kráteresdéssel. Az élek lehetnek élesek is, de a regmagliptek hangsúlyosak!
Peremeken hangsúlyos “ajakrúzsozáshoz” hasonló lefolyásnyomok angolul “roll-over lipps”) és regmagliptek, melyek körbeölelik a meteorit peremét. Ritka de tipikus meteorit jellemző.
ÁLMETEORITOK alaki jellemzői példákon bemutatva:

ÁLMETEORITOK alaki jellemzői példákon bemutatva:

Álmeteorit – hólyagüregek a felszínen, néhol gömbölyded élekkel, de éles peremekkel határolva. Különös, idegen alak!
Álmeteorit – hólyagüregek a felszínen, néhol gömbölyded élekkel, de éles peremekkel határolva. Idegen alak és színek!
Álmeteorit – éles peremek, üvegesedett jellegű belső szerkezet. A mintán átmenő világos erek. Kalapáccsal könnyen pattintható felület.
Álmeteorit – rozsdás felszín, pici éles peremű üregekkel. A felületen idegen szerkezetű és színű (beton?) foltok láthatók. Nincsenek regmagliptek!
Álmeteorit – mangán ötvözet megtévesztő, regmaglipt szerű felszínnel. A minta belül fényes, maratva szerkezetet mutat, de nem mágneses! Oldalt üledékes rész látható, ez idegen a meteoritoktól. Éles perem körben!
Álmeteorit – magnetit, vonzza a mágnes! idegen felszíni világos rárakódás, regmagliptek hiánya jellemzi a legömbölyített formát. Kavicsszerű alak mindig gyanús!

2. lépés: Mágneses teszt

A meteoritok 99,9%-át vonzza az erős pl Neodímium 52 mágnes és a vas-nikkel tartalomtól függően ezen vonzó hatás minden esetben más és más. Mint említettük érdemes a mágnesünket pl. 30-50 cm hosszúságú cérnára felkötve belengetni a minta mellett 1-2 cm távolságra. A mágnes azonnal jelzi a meteoritvas jelenlétét. Vigyázat: acél, kohósalak, magnetit, ipari hulladék, bazalt, érc és vas tartalmú kőzet is vonzza a mágnest! A teszt tehát fontos de nem elégséges a megnyugtató azonosításhoz. Marsi, holdi meteoritokat alig-alig vonzza a mágnes, de ezek előfordulása pár ezrelékes csupán!


3. lépés: Karcpróba teszt

A mintával erősen megkarcoljuk egy fehér porcelán tányér vagy hasonló anyag fehér felületét és megvizsgáljuk, hogy az hagy-e maga után karcot és ha igen milyet és milyen színűt.

Jó a karcpróba, ha a minta egyáltalán nem vagy nagyon vékony karcot hagy maga után. A karc mindig akkor jó ha nagyon vékony vagy nincs és az sosem fekete színű. Az erősen oxidálódott meteorit barnás vagy barnás vörös nagyon vékony karcot hagyhat a felületen. Eltérések lehetségesek, az oxidáció jellege és mértéke után. Győződjünk meg, hogy maga a meteorit kérge hagyta maga után a nyomot vagy esetleg a földi málláskor (pl. föld alól előkerült minta!) a felületre tapadt földi eredetű ásvány vagy kőzet darab.

A karcpróba rossz ha széles fekete vagy vörös nyomot hagy a minta, előbbi magnetit, utóbbi hematit jelenlétére utal.


4. lépés: A minta sűrűségének megmérése

A legfontosabb próbáink egyike! A meteoritok általában sűrűbbek (eltérés persze itt is van) mint a rájuk hasonlító természetes földi kőzetek, ásványok vagy a gyakoribb “man made”, emberi alkotta minták. Természetesen itt is vannak kivételek, de első körös behatárolásra a sűrűségmérés jó támpontot adhat. A mintánk sűrűségét megmérve az alábbi táblázat segít behatárolni, mely meteorit típusba tartozhat az. A kőmeteoritok gyakorisága miatt elsőre mindig kondritot gyanítunk.

a táblázat adatai tájékoztató jellegűek, eltérések lehetségesek.

Tájékoztatásképpen megadjuk a hozzánk és hazai intézetekbe beküldött gyakoribb álmeteoritok (földi anyagok) sűrűségadatait. Természetesen eltérés itt is lehetséges, az adott “ál” minta különböző összetételi előfordulása miatt.

A sűrűségmérést elég tizedesjegy pontosságúra elvégezni. A méréshez tized gr pontosságú mérleg szükséges. A mérés és a számítás menete az alábbi ábrán látható:


5. lépés: A Betekintő ablak (angolul “cutting window”) készítése

Nagy gyakorlatot és speciális vágószerszámokat igényel. Kőmeteoritoknál ehhez gyémánt vágótárcsát célszerű használni, ha lehet vízhűtéssel ellátva. Vasmeteorithoz fémfűrész vagy szintén hűtött abrazív (vágás közben elkopó) vágókorong szükséges, utóbbi esetben gondoskodni kell a hűtésről, mert a minta megéghet (ez utóbbi hűtés a legnehezebb feladat házi körülmények között). Különös óvatosságot igényel az elektromos vágók használata vízhűtéssel összekötve!

Az eljárás lényege, hogy a minta mennyiségétől függően – azt minél kevésbé roncsolva – sík bevágást készítünk a mintán pl. egy jól kiálló nagyobb felületű sarokrészen. Ennek felülete néhány cm2,  olyan hogy azt kézi nagyítóval később könnyen tudjuk vizsgálni (javaslat kb 5-100 gr mintánál 1-2 cm2, egyéb esetekben 5-10 cm2 felület jó lesz). A vágás után a felületet síkra kell csiszolni, a hullámos gátolhatja pl a jó minőségű makrofoto készítését. A felületet minimum 300-as finomságú csiszolópapírral (gyémánt vagy abrazív) finomra kell kidolgozni, ideális a polírozott felület minőség. Kőmeteoritnál ez elegendő lehet, vasnál 800-1500-asre törekedjünk, ez ugye már polír finomság.

  • Kondritnál csillogó ezüstös fémszeplőket kell látnunk elszórva, plusz apró ellipsziseket, köröket.

  • Szenes kondritnál néhány mm-es apró pici ellipsziseket, köröket, esetleg fehér alaktalan foltokat.

  • Akondrit (nagyon ritka típus!) felismeréséhez szakember szükséges!

  • Vasmeteoritnál: egybefüggő ezüstösen csillogó fémes felület a jó. Zárvány üreg, belső repedés vagy azok hálózata kizáró ok! Vasmeteoritokat még tovább lehet vizsgálni: Különleges savas keverékben megmaratva az okta-edrites meteoritok a nevezetes fémesen csillogó Widmanstätten-Thomson-mintát mutatják, ami egymást 60°-ban keresztező, párhuzamos vonalak jellegzetes hálózata és csak vasmeteoritra jellemző!. A többi típus ettől eltérően maratás után nem mutat semmilyen szerkezetet vagy apró pici egymással párhuzamos vonalak rendszerét mutatja (ez utóbbi nagyon ritka!). A savval való maratás rendkívüli gyakorlatot, tapasztalatot és szaktudást igényel, ezt csak szakember tudja elvégezni, ne kísérletezzünk házilagosan vele.

Vigyázat: a hazánkban előforduló ipari könnyűfémötvözetek (pl mangán tartalmú ötvözetek) maratás után szintén mutathatnak a Widmanstätten-Thomson-mintától eltérő mintázatot, de azt a sav gyorsan bebarnítja! Acélt savval maratva annak felszíne nagyon gyorsan beszürkül. Ha pl. becsapódott lövedék repeszt, lövedék magot maratunk az szintén beszürkül és a becsapódáskor megzömült anyag szabálytalan határvonalai jellemzően hullámos mintával kirajzolódnak.

Kondrit meteorit vágott, csiszolt “betekintő ablaka”. Jól láthatók
a fekete alapmátrix fémszeplői.
Pultusk H5 kondrit meteorit vágott szelete a csillogó fémszeplőkkel és rozsdaszínű
kerek kondrumokkal.
L 3 típusú kondrit meteorit határozott gömbölyű kerek peremű kondrumokkal. Könnyen felismerhető szerkezet, csak meteoritokra jellemző a minta!
Vasmeteorit jellegzetes un Widmanstätten-Thomson mintája. Egymást 60°-ban keresztező ún okta-edrit lamellák. Csak vasmeteoritra jellemző minta.
Álmeteorit – megvágott megcsiszolt felület. Nyílt üregek, gázbuborékok nem lehetnek valódi meteoritban. Ez a felület maratva gyorsan sötétre szürkül!
Álmeteorit – Mangán ötvözet megtévesztő maratott felületű mintája. A mintázat nem csillogóan ezüstös és fémszínű, mint vasmeteorit esetén és annak szerkezete eltér a Widmanstätten-Thomson mintától!

6 lépés: Nikkel teszt

Mint említettem a meteoritok mindegyike tartalmaz valamilyen mértékben nikkelt (ld. első részek). A földi kéreg átlagosan 0,005% Ni-t tartalmaz, de ettől eltérő esetekről is tudunk. Illetve a kohászati iparág is használ nikkelt előszeretettel ötvözőként, így az ember által készített fémtartalmú mintákban gyakorta előfordulhat. Ezért ez a teszt nem mérvadó, csupán segítő jellegű. A Ni hiánya viszont a legtöbb esetben kizáró tényező!

A teszt során a porított mintánkat sósavban feloldva reagáltatjuk, dimetil-glixommal és figyeljük a folyadék elszíneződését. Minél nagyobb a nikkel tartalom annál jobban skarlátvörös a folyadék. Ni hiánya esetén a folyadékunk átlátszó vagy matt, de semmiképpen nem vörös. A kohósalak produkálhat vörösödést, de az elhalványul pár perc múlva.

A teszt elvégzéséhez speciális reagens szett szükséges, mely külföldről, internetről beszerezhető. De bízzuk ezt szakemberre inkább.

Nikkel teszt pozitív (vörös szín) és negatív (nem vörös!, de lehet más is) esetben

A tesztek összegzése:

Ha mind az 5 tesztünk pozitív eredményt adott, akkor a mintáról magáról, a betekintő ablakról készítsünk jó minőségű, színhelyes, éles, kontrasztos és  jól látható, részletes fotókat, esetleg egy vonalzót is mellé téve a képen.

További vizsgálatokat házilagosan már nem nagyon tudunk elvégezni. A továbblépéshez szakértelem, kellő műszerezettség és gyakorlat szükséges.

Ha mintánk kiállta a fenti lépéseket egyértelműen, akkor bátran fordulhatunk az eredményekkel, fotóinkkal szakemberhez, a további laborvizsgálatok érdekében. Sajnos a hazai intézmények egy jó része nem rendelkezik kellő gyakorlattal, tapasztalattal és kapacitással meteorit azonosításban, ekkor érdemes tehát hozzám fordulni aki napi szinten foglalkozik meteorit azonosítással és az ehhez kapcsolódó kutatással.


Javaslom tehát:

  • ha a fenti tesztek után bízik abban, hogy mintája valódi meteorit

  • akkor a további vizsgálatok érdekében vegye fel velem a kapcsolatot itt.


Meteorit keresési stratégiák friss hullású meteorit esetén:

Minden meteorpálya-számítás hibával terhelt, ezért fontos, hogy minél pontosabban kimért pálya adataink legyenek. ideális lenne – ha rendelkezésre áll – meteorológiai doppler-radar térképek, mert ott a konkrétan lehulló darabokat látjuk (ez hazánkban még nem elérhető lehetőség). Néhány km2-es keresési terület vagy még kisebb lenne az ideális, de a tűzgömb megfigyelő hálózat ma még hazánkban nem teljes és nem sikerül mindig jó állásszögű és több kamera által is rögzített meteornyomhoz jutni. Ezért a nagyméretű, akár több tíz km2-es keresési terület évekre való keresési munkát adhat. Amerikai tapasztalt meteorit vadászok leírása alapján átlagosan és kb. 65 óra szükséges egy embernek 1 db meteorit megtalálására, mások szerint ez 500 munkaóra is lehet! Mindez akkor érvényes ha megfelelően pontos pályaszámításaink és kellő gyakorlatunk van meteorit keresésben. Ne kedvetlenedjünk el elsőre ha nem találunk meteoritot, kitartó, elhívatott keresés szükséges a megtalálásukhoz, ami kevés esetben jár sikerrel. De ha nem próbáljuk meg, nem is adunk esélyt a megtalálásukra!

Minden esetben ismerni kell a meteorpálya haladási irányának térképre vetített vonalát és a hibahatárral megadott hullási négyszöget vagy ellipszist, kört, stb. Ideális esetben 67 %-os vagy jobb valószínűséggel rendelkező hullási területet érdemes átnézni. Nagyobb terület vagy rosszabb hibájú behatárolás esetén, mindig a terepi viszonyok döntenek arról, hogy mintavétel szerűen hol végezzük a keresést.

Mégegyszer tehát: friss hullású meteoritot az előbbiekben felsorolt meteorit jellemzők alapján szabad szemmel keresünk. A hullott meteoritok jellemzően a föld felszínén találhatók és könnyen észrevehetők a környezettől elütő fekete színük miatt. Több év elteltével vagy pl intenzív mezőgazdasági művelés esetén a meteorit a földfelszín, avar, fű, stb alá kerülhet, ekkor már csak a fémkereső vagy a véletlen segíthet, ezért kell sietnünk a helyszínre érni hullás gyanú esetén.


Érdemes a következők szerint területet választani és keresni:

  • a keresést szakember, lehetőleg hozzáértő meteoritikus, geológus, gyakorlott gyűjtő vezesse. A többieknek célszerű rövid összefoglalót tartani, hogy mit keresünk, hogyan és mire kell figyelni közben,

  • vigyünk magunkkal erős mágnest, térképeket, tollat, alkoholos tollat, papírt, erős fényű zseblámpát, mobiltelefont esetleg adó-vevőt, nylon zacskókat, 2000 gr-ig (0,1 gr pontos) ,érő kézi mérleget, fényképezőgépet, zsebkést, napszemüveget, esőkabátot, hosszú illetve rövid nadrágot, megfelelő ruházatot, élelmet, ivóvizet,

  • a sötét repülés megkezdési pontja és a földet érés pontját összekötő szakasz földi vetületének szűkebb környéke preferált, érdemes meteor haladási irány szerint hátulról előre kutatni,

  • kedvező domborzati jellemzőjű (laposabb, sík mezők, művelt területek) területet válasszunk, kerülendő az erdős, sziklás nehezen megközelíthető, kereshető terület, vízfelületek, mocsaras vidék, stb), magas fű esetén, összenőtt, sűrűbb cserjés, bokros esetén, sekély víznél használjunk FeNi jelére hangolt fémkeresőt, melynek használatához szerezzünk engedélyt (hazánkban pl),

  • lakott terület esetén az eseményről, talált darabokról kérdezősködés, plakát ragasztás, közintézmények, erdészek, hivatalos szervek megkeresése rendkívül hasznosnak bizonyulhat,

  • létszámtól függően csoportokra bontva keressünk, a csoportoknak a helyszínen jól behatárolható területeket válasszunk, a csoportok legyenek kapcsolatban egymással,

  • mindig meteorit szórás mezőt feltételezve keressünk, ha egy példányt megtaláltunk, a szórás mező már behatárolható, úgy hogy a földet éréstől visszafelé haladva találhatóak az egyre kisebb méretű példányok,minden átnézendő területet GPS-el jelöljünk ki és a már átnézett területek GPS koordinátái által körülhatárolt területet jelöljünk meg térképünkön,

  • minden talált meteoritot dokumentálni kell elmozdítása előtt. Készítsünk fotót a meteoritról és mellette a látható GPS pozíciót mutató eszközről, több meteorit esetén a minta számát mutató cetliről. A meteorit tömegét ha lehet a helyszínen mérjük meg és a minta számának megfelelően feliratozott, számozott lezárható nylon tasakba tegyük el.

  • nagy méretű meteorit esetén különösen fontos a jól dokumentált, fotózott környék, elszállításához kérjünk segítséget. Dokumentált (felirat, tasak, fotó, GPS) talajmintát is vegyünk a meteorit közvetlen közeléből. Kráter, gödör, üreg stb estén mérjük le annak átmérő adatait és legnagyobb mélységét cm-ben, ne bolygassuk meg a krátert!

  • nagyobb területeket, csoport esetén érdemes az un pásztázó kereséssel átnézni, mindig legyen egy hozzáértő csoportvezető. A pásztázó keresést a résztvevők létszámától függően csatárláncban végezzük egymás mellett állva, kb 1,5-3 m belátható egyszerre egy személynek a terepen! Ez utóbbi változhat a tereptől függően. Folyamatosan vonalban haladunk a terepi adottságoktól függően oda és vissza. Gyanús minta esetén megállunk és jelezzük a csoportvezetőnek a találatot. Csak ő megy oda megnézni a mintát, a többiek maradnak a helyükön. Elvégezzük a dokumentálást és haladunk tovább. Használhatunk jól látható jelzőzászlókat is a minták helyének megjelölésére (ez gyorsabb haladást tesz lehetővé). A csoportnál jó ha van legalább 1 db fémkereső:

  • egyedül vagy párban keresve szintén a fentiek érvényesek. Cél, hogy ne hagyjunk átnézetlen területet magunk mögött. Minden ellenőrzött területet jegyezzünk fel és juttassuk el azt a keresést koordináló személyhez, hogy ne legyen ugyanaz a rész többször átnézve.

  • létezik egy másfajta keresési eljárás is, amikor csigavonalban haladunk egy pontból kiindulva kifelé, vagy már megtalált meteoritot centrumnak kijelölve indulunk újabb csigavonalas keresésre.

A pásztázó, csatárláncos keresés művelete

Kié a megtalált meteorit?

Hazánkban külön jogszabály nem foglalkozik a megtalált meteoritok tulajdonjogával. Én azt valószínűsítem, hogy egy ilyen jellegű vitás, jogi eljárásban valószínűleg a következő állítás állná meg a helyét: azé a meteorit akinek a földjére esett vagy ott találták meg. Kivéve ha bizonyítható, hogy 1711 előtt már a földben volt, akkor ugyanis az államé lásd 2001. évi LXIV. törvény, a kulturális örökség védelméről.

Soha ne feledjük a meteorit elsősorban a tudományos kutatás tárgya, másodsorban gyűjtői, esztétikai és pénzben kifejezhető érték! A meteoritnak elsőként a szakembereknél van a helye, azonban ha rendelkezésre áll belőle a tudomány számára nélkülözhető mennyiség, akkor a múzeumokban, magángyűjteményekben, kiállítóhelyeken is helye van.

Felhívom a figyelmet, hogy a magánúton megtalált és hivatalosan nem azonosított, leírt, elemzett (klasszifikált) meteorit értéke csekély! A hivatalos klasszifikációt szakember végzi és ekkortól kerülhet a meteoritokat nyilvántartó adatbázisba, a “Meteoritical Bulletin”-be. Az eljárás drága, időigényes és nagy gyakorlatot kíván, bízza ezt ránk.


A kereséshez, azonosításhoz sok sikert kíván!

Kereszty Zsolt
terepi és azonosítási meteorit szakértő
IMCA, Meteoritical Society

Forrás: crbobs.hu

Könyvajánló: Kövesligethy Radó a csillagász és geofizikus

Szerző: Rezsabek Nándor

Eddigi tapasztalataim azt mondatják, hogy az elmúlt két évtized alatt (a többek között) a Magyar Tudományba, a Természet Világába, az Élet és Tudományba, a Meteorba írt félszáz könyvismertetőm akkor talált a leginkább telibe, amikor vagy valamilyen (számomra) revelációszerű tartalommal szolgált, vagy érzékelhető kötödés fűzött az adott műhöz. Jelen esetben az utóbbi igaz – ráadásul hatványozottan! Igaz, hiszen a szerzők közül Bartha Lajos első kötetem lektora, Sragner Márta a második társszerzője volt. A főszereplő, Kövesligethy Radó (1862–1934) pedig egykoron a szomszédságban, egyazon erzsébetvárosi utcában, két házzal arrébb lakott…

A Gothard Jenő Csillagászati Egyesület, a GAE kiadásában még az előző év legvégén látott napvilágot Kövesligethy Radó a csillagász és geofizikus emlékkötet címmel a szép kiállítású kiadvány. Keményborítóval fedve, 263 oldalon tárul fel részleteiben az asztronómia és a szeizmológia területén egyaránt kiemelkedő tudós, egyetemi tanár, akadémikus élete és munkássága. Bartha Lajos – Péntek Kálmán – Sragner Márta adatait, információt, kutatási eredményeit és meglátásait Mitre Zoltán értő szerkesztése, igényes megjelenésre való törekvése teszi könnyebben befogadhatóvá. Külön említést érdemel a gazdag képanyag, és hasznos a kötet angol nyelvű absztraktja.

Péntek Kálmán A csillagos égre feltekintő szemek című bevezető fejezete leginkább a GAE szűkebb pátriájának, Szombathelynek csillagászattörténete és csillagászati jelene – a Kövesligethyhez kötődő szálak kibontásával, így a róla elnevezett csillagda bemutatásával. A kötet gerincét Bartha Lajos szokásosan tudománytörténeti alaposságú, ugyanakkor olvasmányos Két tudomány magyar úttörője – Kövesligethy Radó emlékezete című fejezete adja. Esszencia, „minden-ami-kövesligethy”. Terjedelemben is jelentős a bibliográfia rész, és igen megtisztelő számomra, hogy Sragner Márta 1995 tételes összeállításában három cikkem is szerepel: így a Természet Világában napvilágot látott 2010-es Kövesligethy kötetről szóló ismertető, egy korábbi évfordulós emlékülésről készült beszámoló, valamint síremlékének bemutatása a Meteorból.

Érdemes összefoglalni a kötet bibliográfiai adatait: Bartha Lajos – Péntek Kálmán – Sragner Márta: Kövesligethy Radó a csillagász és geofizikus emlékkötet. Szombathely, 2019. Gothard Jenő Csillagászati Egyesület kiadása, LogoDepo KFT. nyomda. 263 p. Szerkesztés és borítóterv: Mitre Zoltán. Szakmai áttekintés: Polcz Iván és Gazda István. Korrektúra: Keszthelyi Sándor. A Kövesligethy Radó-emlékkötetet – a készlet erejéig – a Gothard Jenő Csillagászati Egyesületnél lehet megrendelni: az egyesület honlapján (https://www.gae.hu/), a Kapcsolatok menüpontban, vagy az egyesület hivatalos Facebook-oldalán (https://www.facebook.com/vasicsillagaszok/).

Nem véletlen tehát, hogy nagyon vártam a postát, és a kötetnek még finom könyvillata is van…


Hell Miksa

Szerző: Csaba György Gábor

Hell (eredeti nevén Höll) Miksa 1720. május 15-én született Selmecbányán. Apja bányamérnök volt, fontos találmányokkal segítette a bánya fejlődését. Miksa (talán) 22 testvére közt is volt két kitűnő bányászati szakember. A technika története mindhármukat számon tartja.

Miksa 1738-ban belépett a jezsuita rendbe. A rendi képzés idején latinra fordított s kibővítve kiadott egy olasz matematikai munkát; teológusi évei alatt pedig társai használatára egy történeti kisenciklopédia-félét írt (Adiumentum memoriae manuale chronologico-genealogico-historicum), amely különböző országokban többször is megjelent. 1751-ben szentelték pappá, s Besztercebányára helyezték. Innen irányította a nagyszombati, majd kolozsvári tanárként az ottani csillagda építését. Később több csillagda, így pl. az egri, a budai stb. létrehozásában is részt vett. Ő tervezte az egri líceum csillagász-tornyában ma is működő idegenforgalmi látványosságot, a periszkópot; ő gondoskodott az egri csillagda részére szükséges műszerek, könyvek beszerzéséről, szakemberek képzéséről is.

A már ismert nevű jezsuitára az említett „kisenciklopédia” felhívta az uralkodónő figyelmét. Mária Terézia 1755-ben kinevezte udvari csillagásznak, s ettől kezdve Hell Bécsben dolgozott. Sok feladatát (csillagászati észlelések, tanítás, a felszerelés karbantartása és fejlesztése, előadások és bemutatások tartása a nagyközönségnek stb.), köztük a nemzetközi hírnévnek örvendő csillagászati évkönyv (Ephemerides astronomicae ad meridianum Vindoboniensem) szerkesztését és kiadását élete végéig mindig nagyon pontosan és lelkiismeretesen végezte. Több, elsősorban matematikai, fizikai és csillagászati tárgyú könyvet is kiadott. Érdekes köztük például a „Dissertetio de satellite Veneris…” (azaz Értekezés a Vénusz holdjáról…) c., 1765-ben megjelent könyvecske, melyben leírja, hogy sok csillagász vélte felfedezni a Vénusz holdját – pedig ilyen hold nem létezik, az összes felsorolt észlelés optikai csalódás. Sőt az említett észlelések leírásából azt is meghatározta, milyen műszert használtak az észlelők, s hogyan jöttek létre bennük a tükröződések, melyek a csillagászokat félrevezették.

Nevét 1760-ban változtatta Hell-re, nyilván a Höll – Hölle, azaz ’pokol’ asszociáció miatt. Erről szól egy rendtársa, Paintner epigrammája, mely magyar fordításban kb. így hangzik:

Höll volt rég, de midőn Bécsből észlelte az égbolt

            csillagait, méltán lett ragyogóbb neve Hell.

Így föld mélyéből, éjszínü sötét üregekből

            nemzetsége nevét égbe ragadta fel ő.

Legfontosabb és legismertebb eredménye a napparallaxis meghatározása volt – ami azonban inkább csak vitákat és kellemetlenségeket hozott számára, mintsem elismerést.

Mint Halley korábban megmutatta: ha a Földnek legalább két helyéről pontosan észlelik a Vénusz Nap előtti átvonulását, az eredményekből kiszámítható a Nap parallaxisa (a szög, melyben a Nap középpontjából a Föld sugara látszanék), azaz lényegében a Nap-Föld távolság. 1761 június 6.-án ezért sok csillagász figyelte a Vénusz-átvonulást. Köztük volt Bécsben Hell is, aki 1764-ben az Ephemerides Astronomicae-ben részletesen beszámolt tapasztalatairól. Eszerint a megfigyelést két jelenség is megzavarta, bizonytalanná téve az érintkezés pillanatát. Egyrészt a Nap elé lépő Vénusz sötét korongját fényes kör vette körül, a Vénusz légkörének fénytörése (tehát bebizonyosodott, hogy a bolygónak van légköre). A másik jelenség még váratlanabb volt: amikor a Nap és a Vénusz korongja belülről csaknem érinti egymást, köztük sötét folt, az ún. fekete csepp jelenik meg.

A mérést nagy pontossággal kellett volna végrehajtani, de az eredmények csalódást keltettek. Ezért az 1769. június 3.-i következő átvonulás megfigyelését még nagyobb gonddal és körültekintéssel igyekeztek megszervezni. Bécsben, Hell munkahelyén ez az átvonulás nem volt látható, az udvari csillagász tehát lemondott a jelenség megfigyeléséről. Azt tervezte, hogy a számításokat elvégzi majd a mások által mért adatokból. 1767-ben azonban VII. Keresztély dán király meghívta Hellt, utazzék Vardö szigetére, s onnan figyelje meg az átvonulást. Vardö több szempontból is kiváló megfigyelőhelynek ígérkezett: ott május végétől augusztusig a Nap sosem nyugszik le, tehát a jelenség idején sem; másrészt magasan északon fekszik, ami a parallaxis-mérés szempontjából különösképpen előnyös. Igaz, a hely megközelítése nem volt sem könnyű, sem veszélytelen; a vidék gyéren lakott, zord, időjárása sem valami kedvező. Hell már ötvenedik évében járt, mégis vállalta a kalandosnak ígérkező expedíciót, természetesen azzal a feltétellel, ha mind uralkodója, mind rendi elöljárói engedélyezik utazását. Az engedélyeket megkapta; a csillagászt és útitársát Mária Terézia is fogadta, útjuk iránt szeretettel érdeklődött, s azt bőkezűen támogatta. Hell rendtársával, Sajnovics Jánossal 1768. április 28-án indult útnak.

Számítania kellett rá, hogy a zord északi időjárás, a gyakran borult ég meghiúsítja az észlelést. Hogy a sok költség és fáradság kárba ne vesszen, Hell nagyszabású tudományos programot dolgozott ki és végzett is el, melyben többek között meteorológiai, földrajzi, geofizikai, botanikai, zoológiai és néprajzi megfigyelések is szerepeltek. Hogy csak egyetlen eredményét emeljük ki: Norvégia partjainak minden pontján, ahol kikötöttek, gondos csillagászati helymeghatározást végzett – ez volt a térség első precíz földrajzi felmérése. Ezt természetesen Vardöben is megtette, sőt elkészítette a sziget pontos térképét is. Közben kipróbálta a földrajzi szélesség (tkp. a sarkmagasság) mérésére feltalált igen fontos és pontos módszerét; ez ma Horrebow-Talcott eljárás néven ismeretes.

Az okkultáció megfigyelését körültekintően előkészítette társaival, Sajnoviccsal és egy Borgrewing nevű dánnal. A várva várt napon az ég felhős volt, de a jelenség kezdetére mégis kisütött a Nap. Miután a Vénusz kívülről érintette a Nap korongját (1. kontaktus), majd belülről is (2. kontaktus), ismét beborult az ég. Ez komoly aggodalmat keltett, mert Hell jól tudta, hogy e két kontaktus adatai a számításokhoz nem elegendők. A bolygó Nap előtti elhaladását, ami több órát vett igénybe, csillagászaink nem láthatták. Már remélni sem merték, de a Vénusz kilépése előtt ismét kiderült az ég, és a belső, majd a külső érintést (3. és 4. kontaktus) zavartalanul, a lehető legpontosabban sikerült megfigyelniök — mint később megtudták, Európában egyedül. Ezzel expedíciójuk fő célját elérték.

Ugyanekkor a Föld déli félgömbjén James Cook kapitány kutatóútja, amelyet részint épp a Vénusz-átvonulás megfigyelése céljára szerveztek (s amelynek során számos földrajzi fölfedezés született, így pl. Ausztrália, Új-Zéland és Tahiti fölfedezése), szintén sikerrel járt. Cook hajója, az Endeavour művészeket és tudósokat is szállított, köztük több csillagászt. A bolygóátvonulást a frissen fölfedezett Tahiti szigetén észlelték, és följegyzéseik szerint váratlanul érte őket a „fekete csepp” megjelenése. (A megfigyelés idején ott igen meleg volt, ami tovább nehezítette a mérést. A kutatók egészségét is megviselte, olyannyira, hogy az egyik csillagász, Green, belebetegedett és meghalt.) Ez a megfigyelés elengedhetetlenül szükséges volt a napparallaxis kiszámításához, hiszen ez csak úgy lehetséges, ha a Föld legalább két, lehetőleg távoli pontján sikerül adatokat gyűjteni.

Hell az expedícióról hazatérve és eredményeit a Cook-féle expedíció méréseivel egybevetve elvégezte a számításokat, és a napparallaxis értékére 8.70”-et kapott (mai ismereteink szerint kb. 8.80”). Ezt az 1770-ben megjelent könyvében (Observatio transitus Veneris ante discum Solis die 3. Junii anno 1769. Wardoehusii etc.) közölte, ahol a megfigyelés előzményeit, pontos leírását is megtaláljuk. A kötet megjelenése elég sok időbe telt, mert a tudósnak meg kellett várnia a Cook-féle eredményeket, majd elvégezve a számításokat, könyvét a dán király elé kellett terjesztenie jóváhagyás végett, s csak ezután nyomathatta ki. Sajnos az utazás teljes tudományos leírása, amit Expeditio litteraria címen tervezett, nem készült el. Megvan azonban a mű részletes vázlata; ezt olvasva csak sajnálhatjuk, hogy e nagyszerű terv, Hell sok más tervével együtt, a jezsuita rend feloszlatása miatt nem valósulhatott meg.

Az expedíció során Hellnek föltűnt, hogy a lappok beszéde, kiejtése hasonlít a magyarhoz. (Egy levelében így írt: …titok terhe alatt közlöm, hogy az egész északon egészen Ázsiáig elterjedt jeles lapp nemzetségnek fölfedeztük egy népét. Jó Isten, ki hitte volna, hogy mi ugyanazon ősatyától való testvéreket fogunk találni a lapp népben! Magyarok, testvéreink, a mi magyar nyelvünket beszélik, a mi magyar ruhánkat hordják, a mi régi magyar atyáink szokásai szerint élnek, egyszóval, testvéreink…) Ennek jelentőségét azonnal fölismerte, s fölkérte Sajnovicsot, kutassa tovább a dolgot. Sajnovics nekifogott, ám a munkát nehézsége miatt többször abbahagyta. Hell mindannyiszor segítette, buzdította társát, míg végre megszületett az összehasonlító nyelvészet egyik alapvető műve, a Demonstratio idioma Ungarorum et Lapponum idem esse. Maga Sajnovics írja, hogy a művet ugyan ő maga vetette papírra, de elkészülte voltaképpen Hell érdeme. A Demonstratio lényege a magyar és a lapp nyelv közeli rokonságának bizonyítása. Mint úttörő munka, nem mentes túlzásoktól, sőt tévedésektől sem, de értékét ez aligha csökkentheti.

A Vénusz-átvonulásról szóló könyv „késése” miatt Hellt sok támadás érte. Először a nagy francia csillagász, Lalande támadta meg, kétségbe vonva nemcsak eredményeit, hanem Hell tudományos tisztességét is. Ezt Hell az Ephemerides 1773-as kötetében visszautasította, mire Lalande elismerte, hogy tévedett. Sajnos ezzel nem volt vége a támadásoknak, amelyek Hell halála (1792) után lángoltak föl igazán. A bécsi csillagda későbbi igazgatója, Karl Littrow (aki – a budai csillagvizsgáló igazgatójaként szerzett tapasztalatai alapján némi joggal – nem kedvelte a magyarokat), kéziratban vizsgálta meg Hell írásait, és bizonygatta, hogy Hell csalt, a kézirat tele van vakarásokkal, javításokkal, és utólag, más színű tintával készült átírásokkal. Szerinte szerzőnk, miután megkapta a Cook-féle adatokat, eredményeit módosította, hogy magát a valóságosnál sokkal jobb észlelő színében tüntesse föl. Littrownak sokan hittek; Hellt tudományos csalás elkövetőjének hitték, s a napparallaxis értékére Enckének Hell eredményénél sokkal pontatlanabb adatait fogadták el.

Csaknem 100 év telt el, míg egy elfogulatlan kutató, az amerikai Newcomb, utánanézett, mi igaz Littrow vádjaiból. 1883-ban Bécsben járva (egy új műszert akart kipróbálni, de hetekig borult volt az idő) unalmában megnézte Hell kéziratát, melyről ő is úgy vélekedett, mint Littrow korábban. Ám az alapos vizsgálat meggyőzte, hogy a naplóban látható korrekciók (vakarás egyáltalán nincs!) egyszerű tollhibák javításai, amelyek hol erősebben, hol gyengébben fogó tollal, de többnyire közvetlenül a hiba elkövetése után történtek. A tinta sem más színű, hanem — Littrow volt színtévesztő! Newcomb igazolta, hogy a Hellre szórt vádak alaptalanok voltak.

A jezsuita rend 1773-as eltörlésével megszűnt a rend által Hellnek nyújtott támogatás. Ekkor Hell a világi papság kötelékébe lépett, reménykedve rendje újjáéledésében – amit azonban nem érhetett meg. Ha nem is zavartalanul, de folytatta sokoldalú tudományos munkáját többek között néprajz, földrajz, történelem, fizika, teológia tárgyköreiben, természetesen a csillagászat mellett. 1774-ben a naptár ügyében nyújtott be egy tervezetet a bécsi udvarhoz; ennek eredményeképpen kiadhatott egy 1776-os csillagászati naptárt.

Élete vége felé Hell sokat panaszkodott arról, hogy egyes „bécsi firkászok” támadják, rágalmazzák, úgyhogy már alig tud dolgozni és aludni. E „firkászok” alatt Born Ignác lovag értendő, aki valóban goromba támadásokat intézett a csillagász ellen. Pedig amúgy érdemdús férfiú volt: neve mineralógusként vált ismertté – mellesleg Mozart „Varázsfuvolá”-jában róla mintázták Sarastro alakját. De miért támadta Hellt? Csak azért, mert fiatal korában maga is jezsuita volt, ám a rendből kilépet, s attól fogva minden alkalmat megragadott, hogy gyalázza azt. Hell megtámadása ennek csak egyik részlete volt.

E támadások, valamint az egymagában, segítő nélkül végzett, mégis egyre szaporodó munka aláásta Hell egyébként sem szilárd egészségét. 1792 tavaszán meghűlt, s lázas, hurutos betegségéből már sohasem gyógyult fel. 1792 április 18-án, 72 éves korában hunyt el.

Még életében több külföldi akadémia (többek között a párizsi) választotta tagjának. Újabban egy kisbolygót (3727 Maxhell), valamint a Holdon egy krátert neveztek el róla.

Vénusz-átvonulást hazánkból legutóbb 2004. június 8.-án, majd 2012 június 6.-án láthattunk (az előbbit teljesen, az utóbbinak csak az elejét). Az egész jelenség tőlünk legközelebb 2247-ben lesz megfigyelhető.