Könyvajánló: Van-e élet a Földön kívül?

Johannes Dorschner könyve egy, az embert már régóta foglalkoztató kérdésre keresi a választ: “Egyedül vagyunk a Világegyetemben?

Van-e élet a Földön kívül? Gondolat Zsebkönyvek, 1975. ISBN 963-280-111-3

A szerző a problémafelvetés után felvázolja többek között az extraterresztiális élet számunkra elérhető bizonyítékait, bemutatja a földi élet keletkezését, ismerteti a Naprendszer égitestjeit asztrobiológiai szemszögből, betekintést nyújt a rádióhullámok természetébe, illetve bemutatja a szupercivilizációk egyik lehetséges osztályzását.

Érdemes beszerezni!

Űrbatyu II a sztratoszférába tör – a Rezsabek Nándor ScienceBlog és a Planetology.hu médiatámogatásával

Szerző: Rezsabek Nándor

2020. május 2-án Várpalotáról emelkedik a sztratoszférába az Űrbatyu II. A Bakonyi Csillagászati Egyesület tavaly sikeres és kalandokban gazdag magaslégköri ballon projektje tehát folytatódik – még professzionálisabb eszközállománnyal és műszerezettséggel, komoly támogatókkal. Örömteli és megtisztelő, hogy ennek tudománynépszerűsítő szálán a Rezsabek Nándor ScienceBlog, a Planetology.hu portál és a Gravitáció blog médiatámogatóként adhat hírt a kísérletsorozat izgalmas eseményeiről.

További információ a Bakonyi Csillagászati Egyesület és az esemény oldalain:

https://bacse.hu/

https://www.facebook.com/bakonyicsillagaszatiegyesulet/
https://www.facebook.com/events/197754011607199/


Hírek a Naprendszerből #2

Elhunyt Katherine Johnson

101 éves korában elhunyt Katherine G. Johnson, a NASA matematikusnője, akinek kulcsszerepe volt az űrutazásokhoz elengedhetetlen matematikai számítások elvégzésében.

Katherine G. Johnson (1918-2020) Fotó: NASA

1918. augusztus 26-án született a nyugat-virginiai White Sulfur Springs-ben, és elmondása szerint egész életét a matematika töltötte ki: számolta a templomhoz felvezető lépcsők számát, a gyalog megtett lépéseket csakúgy, mint a már elmosott edények számát. A matematikusnő életét dolgozza fel A számolás joga című film.

Forrás: NASA, Ars Technica


Marsrengések

A NASA InSight nevű űrszondájának szeizmométere az elmúlt tíz hónapban 174 marsrengést rögzített, az eredmények azt a feltevést erősítik meg, miszerint a vörös bolygó tektonikailag és vulkanikusan továbbra is aktív.

A Cerberus Fossae több száz mérföldes repedései (ESA/DLR/FU Berlin

Az űrszonda a tőle 1600 km-re fekvő Cerberus Fossae-ből származó rengéseket érzékelt, melyek erőssége a Richter-skála szerinti 4-es fokozatot is elérte.

Forrás: Astronomy.com


Rekordot döntött a Parker Solar Probe

2018. augusztus 12-én bocsátotta fel a NASA a napkorona és a napszél tanulmányozására a Parker Solar Probe nevű űrszondát, mely 2020. január 26-án két rekordot is megdöntött: az eddigieknél közelebb, mindössze 18,6 millió km-re közelítette meg a Napot; továbbá minden eddiginél gyorsabban, 393 ezer km/h-s sebességgel száguldott el központi csillagunk mellett.

A Parker Solar Probe. Fotó: NASA

Forrás: NASA

Egy magyar Mars-rover születése

Szerző: Lerch Krisztián

Mi a RECON? A RECON csupán egy koncepció, egy fantázia. Nem titkolt célunk, hogy a kész modell 2020 nyarán egy virtuális Mars missziót hajtson végre. Az elkészítésének a valós indoka azonban, hogy ez a kisméretű modellje legyen egy a jövőben megépülő nagyobb méretű rovernek (Big Recon). Ezen a kisebb járművön lesz az utódja megoldásai és a mozgásmechanizmusa tökéletesre kikísérletezve, megkönnyítve számunkra a majdani tervezés folyamatát. A Recon utódja egy teljes méretű rover lesz, ami minden tekintetben és funkcionalitásában egy a jelenlegitől jóval fejlettebb rendszerrel fog rendelkezni. Reményeink szerint a konstrukció be fog kerülni az űrkutatás világába, úgy mint egy alaposan kidolgozott koncepció. Természetesen addig még rengeteg tervezés, munka és tesztelés áll előttünk.

A Recon roverben már létező megoldások lettek alkalmazva. A futóművének az alapja egy régi ötleten, a „rocker-bogie” billenő-forgóváz felfüggesztési elrendezésen alapul, amelyet a NASA előszeretettel használt minden roveres küldetésében. Habár ez a konstrukció nem újkeletű, azonban még mindig ez az egyik legjobban használható futómű megoldás, amit valaha roverekhez alkalmaztak.

A kormányzott kerekek szintén nélkülözhetetlenek a rendszerben. A szerkezet elektronikai részei könnyen beszerezhető alkatrészekből lettek összeállítva, amiből egyenesen következik, hogy a végeredmény nem éppen űripari minőségű, azonban mindent elkövettünk annak érdekében, hogy annak a látszatát keltsük. Számunkra a megjelenés ugyanolyan fontos, mint a funkcionalitás. Hisszük, hogy a megjelenésének is tükröznie kell azt, amire tervezték. Egy kutató robot tervezésénél, fontos szempont, hogy a hajtáslánc, motorok, valamint szervók kifinomultan, megtervezetten mozogjanak. Haladási sebességében a „lassan, de biztosan” jelmondatot végig szem előtt tartva lett megtervezve. A rover nem lesz gyors, de nem is ez a cél. A cél az, hogy lassú mozgás mellett amennyire csak lehetséges biztosítva legyen a hat kerék stabil, csúszásmentes állapota.

Az első modell megközelítőleg 1/3 méretarányban lett megépítve, azért hogy a költségek minimalizálva legyenek. A hossza 32 cm, szélessége zárt panelok állásában 22 cm, míg nyitva 36 cm, magassága 28 cm. Tömege megközelítőleg 2200 g. A rover előre és hátra 46 fokig, míg oldalirányban 42 fokig dönthető borulás nélkül. A szerkezet anyaga teljes egészében alumínium, eltekintve néhány kisebb műanyag alkatrésztől.

Az alábbiakban a teljesség igénye nélkül kerülnek a rover komponensei felsorolásra:

Meghajtás, futómű:

Minden kereket elektromos motor hajt áttételezve. Maximális sebessége 0,5 fordulat (10,5 cm) / másodperc. A rover szélein lévő kerekek kormányozhatóak 140 fokban, ezáltal a rover egy helyben is meg tud fordulni. A futómű egy teleszkóptól, valamint rúgóktól teljesen mentes „rocker-bogie” megoldás. A teszteken használt kerekeket felváltották a végleges, 3D nyomtatott tömör kerekek, melyek alkalmasabbak a Mars terepviszonyaihoz. Ezen új kerekek tesztelése jelenleg folyamatban vannak.

Energiaellátás:

Az energiaellátásról 2 cella Li-Po 5000mAh 20C akkumulátor gondoskodik. Az akku töltését 3 db 18V-os solar panel fogja biztosítani, ami ideális esetben 650mAh-val képes tölteni.

Vezérlés:

A vezérlést több eszköz is végzi majd. A kamerák és a különböző rendszerek bekapcsolását és kikapcsolását, valamint a telemetriai adatok rögzítését egy arduino MCU fogja végezni. Az irányításról pedig egy Hitec Aurora 9 fog gondoskodni PC vezérléssel.

Optikai eszközök:

A rendszer része 3 db kamera (1000TVL FPV Camera 3.6mm Wide Angle Lens), aminek videó képét az irányító központ fogja 5.8Ghz-en. Egy előre és egy hátra néző kamera a mozgatható állványzaton, végül egy kamera a robotkar végén, hogy közelről is meg lehessen vizsgálni a kőzeteket.

Kommunikáció:

Kétirányú kommunikáció fog megvalósulni több frekvencián is. Az arduino wifi-n keresztül a 2.4Ghz-es sávban valamint 433Mhz-en. A videó rendszer pedig 5.8Ghz-en és 1.2Ghz-en, illetve a Hitec Aurora 2.4Ghz-en.

Robotkar:

A teljes 3D mozgást lehetővé tévő robotkar, hat szervóval rendelkezik majd. A kar végén egy mikroszkóp kamera, LED világítás és egy kőzetfúró kap majd helyet. Ennek tervei jelenleg kidolgozás alatt állnak.

Összességében 6db motor, 16db szervó és 3db kamera lesz a rover-en. Az építés közben természetesen még sok részlet megváltozhat, de az irány adott.

A rover már túl is van az első komolyabb tesztjén, ami a szerkezet mechanikai tesztelése volt egy marsi felszínt szimuláló domborzaton. Próbáltunk változatos helyszínekkel, tereptárgyakkal létrehozni egy kis darabot a Marsból. A felhasznált anyagok összetétele, állaga, hasonló a Mars felszínéhez. A valóságban a NASA rovereit a Marson egy csapat mérnök jóval a rover előtt járva próbálja a legoptimálisabb útvonalon navigálni oly módon, hogy a manőverek a legkisebb kockázattal járjanak. Az általunk épített terep legtöbb eleme méretarányosan már vállalhatatlan kockázattal járna egy valós küldetésben, tehát valójában biztosan elkerülnénk azokat. A konstrukció célja nem a hatalmas akadályok megmászása, hanem a váratlan, szorult helyzetek leküzdése. A következő lépésekben az elektronika kiépítése és a robotkar valósul meg. A jelenlegi modell kis mérete miatt, csak korlátozott lehetőségeink vannak a különböző rendszerek roverbe való integrálására. Egyszerűen nincs hely mindennek. Fontos hangsúlyoznunk, hogy ez csak egy kisméretű modell, egy látványterv. Tisztában vagyunk a szerkezet hiányosságaival. Sajnos nem létezik tökéletes mechanikai konstrukció, de igyekeztünk a lehetőségeinkhez mérten a legjobb eredményt elérni. Már most rengeteget tanultunk és tapasztaltatunk, amit a következő modell tervezésénél és építésénél fogunk felhasználni.

A Rosetta-üstökös nyomában (VIDEÓ)

Az Európai Űrügynökség (ESA) Rosetta űrszondája 2014 és 2016 között a 67P/Csurjumov-Geraszimenko üstököst tanulmányozta, ez alatt a két év alatt rengeteg adatot gyűjtött az égitestről, egy apró szondát bocsátott annak felszínére, valamint körülbelül 400 000 képet is készített róla. Az alábbi videó az ezalatt készült képekből készült. A filmet Christian Stangl és Wolfgang Stangl készítették.

A pár perces összeállítás szó szerint egy másik világba röpít minket. Leírhatatlan a felénk közelgő, forgó, néhány kilométeres csipkézett jeges kőrakás. Felszínformáinak kuszaságára, a távolodó Philae szonda látványára és a “felfelé eső hó“-ra nehéz szavakat találni…

Forrás: Petapixel.com, Reddit

Útra készen a SMOG-P

November 28-án indul a SMOG-P és az ATL-1 a második és harmadik magyar műhold, a Rocketlab új-zélandi kilövőállomásáról. A Budapesti Műszaki Egyetem készítette miniatűr űreszközök feladata a rádiófrekvenciás szennyezettség, azaz az elektroszmog mérése a földfelszíni TV-adók sávjában, alacsony Föld körüli pályáról.

A SMOG-P műhold
Forrás: Gunter’s Space Page

FRISSÍTÉS #1: a november 29-ére tervezett indítást technikai okokból elhalasztották, a indítás új időpontja december 2.

FRISSÍTÉS #2: a következő indítási kísérlet december 6-án lesz, az eseményt itt lehet nyomon követni.

Forrás:
https://www.facebook.com/smog1official/
http://gnd.bme.hu:3443/
https://space.skyrocket.de/doc_sdat/smog-p.htm

Új nevet kapott az Ultima Thule

November 12-én a New Horizons űrszonda által meglátogatott 2014 MU69 jelű kisbolygó, ideiglenes elnevezésén az “Ultima Thule” új nevet kapott: ettől a naptól fogva Arrokoth-nak hívjuk, mely Powhatan (ejtsd: Póhatán) nyelven égboltot jelent.

Az Ultima Thule, új nevén az Arrokoth (NASA)

A NASA New Horizons csapata a Powhatan indián törzs vénjeinek és képviselőinek egyetértésével javasolta ezt az elnevezést az IAU (Nemzetközi Csillagászati Unió) és a Minor Planet Center (Kisbolygó Központ) számára.

A New Horizons pályája a Naprendszerben

Az újonnan felfedezett égitestek esetében fontos szerepet játszik az azokat felfedező műszer(ek) földrajzi elhelyezkedése, elég, ha a hawaii nevű ‘Oumuamua-ra gondolunk, melyet az adott szigetekre telepített műszerekkel találtak meg. Most sincs ez másként, az Arrokoth kisbolygót felfedező New Horizons irányítóközpontja ugyanis az USA Maryland államában található, ezen belül a Powhatan törzs területén.

Forrás: NASA

2020 Luna 50

Szerző: Rezsabek Nándor

2019-ben az emberes Holdra szállás fél évszázados évfordulójára emlékeztünk. Az Apollo 50 a modern kori földrajzi felfedezések történelmi eseményének méltó ünneplésével telt
(http://rezsabeknandor.blogspot.com/2019/10/a-hold-opusz-es-relikviaim.htmlhttp://rezsabeknandor.blogspot.com/2019/07/privat-apollo-50-iv-felvonas_18.html).

Nem szabad azonban megfeledkezni arról sem, hogy a holdkutatás automatákkal végzett ágának is komoly műszaki és tudományos hozadékai voltak. Valamint arról, hogy az akkori korszak másik űrhatalma, az egykori Szovjetunió ugyancsak kiváló eredményeket ért el a Hold űreszközökkel történő vizsgálatában.

2020-ban így három ismeretterjesztő blogoldal-portál együttműködésében a Luna-17 repülés 50 évvel ezelőtti emblematikus eseménye, az első ember alkotta automata naprendszerbeli felszíni jármű, a Lunohod-1 útjára indítása kapcsán a Luna-programra fókuszálunk.


Rezsabek Nándor által 1997-ben a londoni Science Museumban készített felvételen a Naprendszer első sima leszállását (soft landing) végrehajtó űreszközének, a szovjet-orosz Luna-9-nek méretarányos modellje, melynek eredetije 1966. február 3-án ereszkedett le a holdi Viharok Óceánjára

Ahogy az Apollo-11 1969-es leszállását is megelőzte és követte az Apollo-missziók több küldetése, így az 1959-es első holdközelítő Luna-1-től az utolsó, 1976-os automata Luna-24 talajmintagyűjtő úttal bezárólag foglalkozunk az űrkutatás-történetének eme fontos planetológiai fejezetére.

Rezsabek Nándor ScienceBlog (http://rezsabeknandor.blogspot.com/https://www.facebook.com/rezsabeknandor/), Kovács Gergő felelős szerkesztő irányításával a Planetology.hu portál (http://www.planetology.hu/https://www.facebook.com/planetologyhu/)valamint Nagy Róbert Csillagászati Blogjának (https://amatorcsillagaszat.blogspot.com/) összefogásával megkezdődött egy Luna-kamarakiállítás anyagának összeállítása (korhű relikviák, kiadványok, bélyegek, levelezőlapok, a leszállóhelyek asztrofotói, műszaki és tudományos tények), melyet a tervek szerint az ország több pontján is meg lehet majd tekinteni. E sorok írójának révén a nyomtatott, az összefogás révén az elektronikus sajtóban és médiafelületeken változatos tartalmakat publikálására kerül sor. Emellett elkezdődött egy témába vágó előadási tematika kidolgozása is.

2020 Luna 50!

Üstökösök és felszínformáik

Szerző: Balogh Gábor

Az üstökösök megfigyelései több ezer évre nyúlnak vissza (1). A kínai üstökös-megfigyelések pontosságát csak a XV. században sikerült a nyugati világnak utolérnie. Több száz éves rajzok, leírások maradtak ránk, melyek üstökösöket ábrázolnak, a legkorábbi ie. 613-ból maradt ránk. Európában a legkorábbi ábrázolása 684-ből származik a Nürnbergi Krónikákból, valamint a híres Bayeux-i kárpiton is megjelenik, 1066-ban.

Üstökösök ábrázolása, ie. II. század, Hunan tartomány, Kína (2)

A pontos megfigyelések dacára, az üstökösök igazi természete rejtve maradt. Légköri jelenségeknek vélték őket, és – akárcsak Európában – rossz ómennek tekintették őket. Arisztotelész is úgy vélte, hogy nem csillagászati jelenségekről van szó, hanem az üstökösök az atmoszférában mozognak. Csak 1577-ben jött rá Tycho Brahe, hogy az üstökösök csillagászati jelenségek, hiszen a C/1577 V1 üstökös parallaxisát megmérve, egyértelművé vált, hogy az a bolygóközi térben mozog (3).

A csillagászok számára azonban még mindig távoli, ismeretlen „anyagcsomók” voltak, melyek közül sokak pályaelemeit jól ismertük, de összetételükre csak 1950-ben érkezett Fred Lawrence Whipple-től megfelelő modell, miszerint ezek az objektumok egyfajta „piszkos hógolyók” (4). Későbbi, űrszondákkal való megfigyelések igazolták azt a modellt (5).

De honnan is származnak az üstökösök? A Jupiter távolságánál található az úgynevezett jéghatár – ettől távolabb a jég megmarad, ettől közelebb a Nap felé, a jég szublimál. A Naprendszer kisbolygói és üstökösei, melyek nagy része a Naprendszer legősibb, eredeti anyagát képviselik, olyan „nyersanyag”, melyből a bolygók jöttek létre, kutatásuk ezért is nagy fontosságú. A Naphoz közelebbi régióban, a Jupiteren innen, a kisbolygóövben található a kisbolygók nagy része, az üstökösök viszont főleg a Kuiper-övből (rövid periódusú üstökösök) és az Oort-felhőből (hosszú periódusú üstökösök) származnak. Ezek a kis égitestek viszont migrálnak, geológiailag nincs éles különbség a kisbolygó és az üstökös között. Elméletileg tehát, az üstökösök nagyon porózus, jégből és porból álló égitestek, „piszkos hógolyók” – a kisbolygók pedig főként szilikátokból és fémből álló égitestek. A valóság azonban ennél bonyolultabb, hiszen e két „ideális” égitest között számtalan változat létezik. Vannak vizes kisbolygók, és léteznek kiszáradt üstökösök. A planetológiában ezért a „száraz vagy vizes planetezimál” kifejezést használjuk (6, 7).

A Giotto szonda 1986-ban 596 kilométerre közelítette meg a Halley üstököst, megmérve kiáramló anyagának az összetételét. Ekkor az üstökös mintegy három tonna anyagot lökött ki másodpercenként. Felszínének napsütötte oldalán mintegy 10%-a volt aktív. Területének nagy részét vastag, sötét porréteg borította (8).

A Stardust űrszonda 2004-ben suhant el a Wild 2 üstökös mellett, porszemcséket gyűjtve annak kómájából. 2006-ban juttatta vissza a földre a mintavevő egységét. Az elemzések sokféle szerves anyagot, köztük aminosavakat, valamint alifás vegyületeket találtak. A vas- és rézszulfidok jelenléte pedig a folyékony víz létét bizonyítja az üstökösön (9). A szonda 2011-ben 181 kilométerre a Tempel 1 üstökös mellett is elhaladt.

A Rosetta, és leszállóegysége a Phylae, 2014-ben ért a 67P/Churyumov–Gerasimenko üstököshöz. A mérések 16 féle szerves anyagot mutattak ki, négyet közülük itt először. Első ízben készültek képek egy üstökös felszínén (10).

67P/Churyumov–Gerasimenko üstökös valós színekben. Forrás: ESA/Rosetta

Az az idő egyre távolabbinak tűnik, amikor az üstökösök csak távoli „anyagcsomók” voltak a csillagászok számára. Eljött az a korszak, amikor az üstökösöket már geológus-szemmel is lehet vizsgálni.

A 10 kilométernél nagyobb üstökösök belsejében tehát folyékony víz lehetséges, melyet alumínium- és vas-izotópok bomlása melegít (11,12).

Egy üstökös felépítése. A szerző saját grafikája

Belseje nagy porozitású, szerkezetének 60-80%-a üreges, szenes kondrit (18) és jég alkotja. Napközelben felszíne felmelegszik, szublimációs folyamatok kezdődnek a Nap által megvilágított területeken. A kilökődött anyag porszemcsékből és gázokból áll, de megfigyeltek csak gázkibocsájtást is, tehát a felszín alatti részek összetétele és szerkezete helyenként változó.

A kilökődött anyag porszemcsékből és gázból áll. Forrás: ESA/Rosetta

Egyes területek hamar kigázosodnak, kialakul felettük egy kemény, 10-50 cm vastag poros, réteges, inaktív réteg (17). A hiányzó anyag miatt azonban ez a kéreg beszakadhat, ismét elindítva egy kigázosodási folyamatot. Napközelben, a felszín több métert is süllyedhet rövid idő alatt. A felszín aktív kürtők, beszakadások tagolják (13, 14).

Egy kétszáz méteres aktív kürtő. Forrás: ESA/Rosetta

Máshol, nyugodtabb területeken, napi jégciklust figyeltek meg. A 12 órás nap során, a helyi hajnalon, a felszíni jég szublimálni kezd. Délben, a néhány centiméteres mélységből is párologni kezd a jég, majd éjszaka, amikor a felszín gyorsan lehűl, az alatta levő rétegek viszont még melegek. Ezekből a rétegekből azonban folytatódik a párolgás felfelé, a hideg felszín felé, ahol is kifagy. Másnap, hajnalban, a szublimáció újra elkezdődik (16).

A napi jégciklus (16)

A Rosetta ottléte alatt számos változás történt az üstökös felszínén, különösen akkor, amikor az üstökös napközelben volt. Sima terepen kialakuló kör alakú mintázatok például napi néhány méterrel is nőttek. Az úgynevezett nyaki régióban, mely az üstökös két részét köti össze, törésvonalak jöttek létre, valamint több méteres sziklák vándoroltak csaknem 100 métert.

Törésvonal a nyaki régióban. Forrás: ESA/Rosetta
Egy 30 méteres szikla 140 métert mozdult el. Forrás: ESA/Rosetta

Megfigyelték az üstökös első csuszamlását is, amikor egy hatalmas sziklafal összeomlott, láthatóvá téve a mélyebben fekvő, frissebb, jégben gazdag rétegeket (15).

A földcsuszamlás láthatóvá tette a frissebb, mélyebben levő rétegeket,
melyek jégben gazdagabbak.
Forrás: ESA/Rosetta

Az egyik legváratlanabb felszíni formációt a Hapi régióban, a „nyakban” találták. Az üstökös és a napszél kölcsönhatásának egy érdekes jelét találták itt meg – eolikus hullámokat (19, 20, 21, 22), akárcsak a Földön, vagy a Marson. Természetesen, az üstökösökön nincsen olyan légkör, ami lehetővé tenné a porszemcsék szél általi szállítását, itt a napszél végzi el ezt a munkát.

Eolikus hullámok a nyaki régióban. Forrás: ESA/Rosetta

Források:

  1. Chinese Oracle Bones, Cambridge University Library.
    http://www.lib.cam.ac.uk/mulu/oracle.html
  2. China Arts, Volume 1st, Wen Wu Publishing, Beijing, China, 1979-10
  3. A Brief History of Comets I (until 1950). European Southern Observatory. http://www.eso.org/public/events/astro-evt/hale-bopp/comet-history-1.html
  4. Whipple, F. L. (1950). “A comet model. I. The acceleration of Comet Encke”. The Astrophysical Journal. 111: 375.
    https://ui.adsabs.harvard.edu/abs/1950ApJ…111..375W
  5. List of comets visited by spacecraft
    https://en.wikipedia.org/wiki/List_of_minor_planets_and_comets_visited_by_spacecraft#List_of_comets_visited_by_spacecraft
  6. Workshop From Dust to Planetesimals. https://web.archive.org/web/20060907075604/http://www.mpia.de/homes/fdtp/
  7. Planetesimals: Early Differentiation and Consequences for Planets. Linda T. Elkins-Tanton, Benjamin P. Weiss, 2017, ISBN 9781107118485
  8. J. A. M. McDonnell; et al. (15 May 1986). “Dust density and mass distribution near comet Halley from Giotto observations”. Nature. 321 (6067s): 338–341.
  9. LeBlanc, Cecile (7 April 2011). “Evidence for liquid water on the surface of Comet Wild 2”
    https://earthsky.org/space/evidence-for-liquid-water-on-the-surface-of-comet-wild-2
  10. “Europe’s Comet Chaser – Historic mission”
    http://www.esa.int/Science_Exploration/Space_Science/Rosetta/Europe_s_comet_chaser
  11. Pomeroy, Ross (March 2016). “Large Comets May Have Liquid Water Cores. Could They Contain Life?”. Real Clear Science.
  12. Bosiek Katharina, Hausmann Michael, and Hildenbrand Georg. “Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life.” Astrobiology. March 2016.
    https://doi.org/10.1089%2Fast.2015.1354
  13. Vincent, Jean-Baptiste; et al. (2 July 2015). “Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse”. Nature. 523 (7558): 63–66.
  14. Ritter, Malcolm (1 July 2015). “It’s the pits: Comet appears to have sinkholes, study says”. Associated Press.
    http://apnews.excite.com/article/20150701/us-sci–comet_sinkholes-11254d29fb.html
  15. Byrd, Deborah: Landslides and avalanches keep comets active.
    https://earthsky.org/space/landslides-avalanches-comet-67p-key-long-term-activity
  16. ESA’s Rosetta data reveals evidence for a daily water-ice cycle on and near the surface of comets https://phys.org/news/2015-09-esa-rosetta-reveals-evidence-daily.html
  17. Structure and elastic parameters of the near surface… https://www.sciencedirect.com/science/article/pii/S0019103517304165
  18. Chemistry of Organic Species in Comet 67P
    http://elementsmagazine.org/2018/04/16/rosetta-mission-organic-species-comet-67p/
  19. Eolikus folyamatok és formák
    https://www.studocu.com/en/document/szegedi-tudomanyegyetem/geomorfologia-foeloadas/past-exams/foeldrajz-bsc-allamvizsga-8-tetel-eolikus-folyamatok-es-formak/2369899/view
  20. Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko
    https://www.aanda.org/articles/aa/abs/2015/11/aa26049-15/aa26049-15.html
  21. Aeolian ripples in the Hapi region
    https://sci.esa.int/web/rosetta/-/56796-aeolian-ripples-in-the-hapi-region-osiris-nac
  22. Interaction of the solar wind with comets: a Rosetta perspective
    https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0256

Nem sikerült a Chandrayaan-2 Holdra szállása

Az Indiai Űrkutatási Szervezet (ISRO) Chandrayaan-2 leszállóegységének küldetése 2019. szeptember 6-án sikertelenül végződött. A Vikram nevű leszállóegység és a Pragyan nevű rover a magyar idő szerint késő estére tervezett leszállás során, körülbelül 2 kilométerre a holdfelszín fölött elvesztette a kapcsolatot a földi irányítóközponttal, és nagy eséllyel a Holdba csapódott.

A Chandrayaan-2. (ISRO)

A leszálló egységből érkezett adatok elemzése már folyamatban van, továbbá az ISRO szakemberei igyekeznek továbbra is felvenni a kapcsolatot a leszálló egységgel, abban a reményben, hogy az űrszondának sikerült a “puha” landolás. Emellett a továbbra is a Hold körül keringő Chandrayaan-2 is a leszállóegység nyomába ered. A landolás nyomon követte az irányítóközpontból Narendra Modi, az indiai miniszterelnök is.

Feszült percek az irányítóközpontban. (ISRO)

Ha a Vikram küldetése sikerrel járt volna, akkor az Egyesült Államok, Oroszország és Kína után India lett volna a negyedik olyan ország, melynek űrszondája leszáll égi kísérőnkre, ez az álom azonban meghiúsult. Így Izrael után egy újabb gazdasági-tudományos-műszaki nagyhatalomnak sem sikerült a Holdra letenni az űrszondáját, mely azt bizonyítja, hogy a Hold még mindig igen nehéz célpont, hát még a Mars!

A landolás közvetítését itt lehetett nyomon követni.