Dénes Lajos: A nagy ordovician meteorzápor

2014-ben írtam egy öt részes bejegyzést a Csillagvárosba erről a témáról, azonban én a meteoritok szempontjából közelítettem meg ezt az eseményt. Most valahogy ismét előkerült a téma egy beszélgetés alkalmával…

“470 millió évvel ezelőtt volt egy hatalmas ütközés a Mars és a Jupiter között, két 100 km-es szikla ütközött össze, ez volt a legnagyobb karambol a Naprendszerben az elmúlt 1 milliárd évben.”

Ez elég erős állítás, és az erős állítások erős bizonyítást kívánnak. Engem a bizonyítás érdekelt. Nos, először tisztázzuk, hogy miről is van szó. Az ordovícium egy geológiai korszak ill. rendszer. Ez egy 485,4 ±1,9 és 443,4 ±1,5 millió évvel ezelőtti időszak. A korszakot Charles Lapwort határozta meg 1879-ben. Két geológus, Swdick és Murchison, vitatkozott azon, hogy az észak-walesi kőzetek a kambrium vagy a szilur korszakban keletkeztek-e. Lapworth megvizsgálta a két rétegben talált fosszíliákat és talált olyanokat is amelyek különböztek a kambriumi és sziluri leletektől. Javasolta, hogy külön kategóriát állítsanak fel emiatt és javasolta, hogy ordovíciumnak (Ordovician) nevezzék el egy Wales területén élt ordovik nevű kelta törzsről. Az 1906-os Nemzetközi Geológiai Kongresszus ezt hivatalosan el is fogadta.

Az ordovícium idején jellemzően magas volt a tengerek szintje. A tremadoc korszakból a valaha létezett legnagyobb transzgresszióra (relatív tengerszint-emelkedés) maradtak bizonyítékok. Az ordovíciumi kőzetek jórészt üledékesek és jelentős arányt képvisel köztük a mészkő. Az élet a tengerekben virágzott, a nemzetségek száma megnégyszereződött. Puhatestűek, kagylók, csigák, csigaházas polipok, állkapocs nélküli halak (ők az első igazi gerincesek), és a korszak végére megjelent az első állkapcsos hal is. Ezek annyiból érdekesek számunkra, hogy a korszak végére jellemző volt egy tömeges kihalás. 443 millió évvel ezelőtt, a tengeri nemzetségek 60%-a kihalt. Itt kezdődne a meteoritos történet…

Egy elmélet szerint 470 millió évvel ezelőtt a fő aszteroidaövben ütközött két kb. 100 km-es aszteroida. Ez az ütközés létrehozott egy hatalmas törmelékfelhőt. Ebből a törmelékfelhőből relatíve sok ütközött a Földel. Az ütközések gyakorisága legalább százszorosa annak, ami jelenleg tapasztalható. Ezek a törmelékek ettől az időponttól megtalálhatóak az üledékes kőzetekben. Az elmélet ehhez a meteorzáporhoz köt két drámai eseményt. Az egyik, egy sor hatalmas földcsuszamlás, a másik pedig egy tömeges kihalási esemény. Az elmélet abból indul ki, hogy a svéd mészkőbányák elértek egy olyan réteget ahol az addig szép fehér mészkőben „csúnya” zöld foltok jelentek meg. Ezek a furcsa foltok, csomók fosszilis meteoritok. Ez rendkívül ritka jelenség, ezelőtt a geológusok még nem láttak ilyet. Mario Tassinari nevű amatőr geológus azonosította 1980-ban, de a szakma nem fogadta el. Azóta a kutatók, főleg Birger Schmitz, (Svédországi Lund Egyetem), több mint 90 db meteoritot talált ebben a mészkőbányában. Azért ugye ez sem gyakori… Ezt felismerve, nekilátott egyéb bizonyítékok keresésének az azonos korú kőzetekben. Ez úgy történt, hogy a mészkövet savban oldotta, és apró krómszemcséket keresett benne. Króm van a Földön is, de a kémikusok valószínűsítették, hogy ezek a szemcsék az űrből érkeztek. Szorgos munkával talált ilyen szemcséket kínai, orosz, svéd, skót és argentin mintákban is. Azonban akkor talált egy részletes, írországi ásványi elemzést az ottani, hasonló korú kőzetekről és ezekben a kőzetekben is megtalálták a krómszemcséket. Az írek állítása szerint viszont a krómszemcsék erodált ofiolitból származnak. (Az ofiolit az óceáni kéreg kőzetegyüttese. Az óceánközépi hátság vidékén keletkezik, a Föld köpenyéből fölnyomuló magmából.) Kinek van igaza? A matematika kegyetlenül precíz, de sokszor segít a viták eldöntésében.

Ebben az esetben is így történt. A svéd minta azért tartalmazott annyi meteoritot, mert az ott talált kőzetminta rétegeinek minden centimétere közel 10 000 év alatt jött létre, ugyanis akkoriban tenger borította a felszínt. A fenéken iszapból, mészkősárból és szerves „hulladékból” keletkezett a kőzet, tehát egy nyugodt, stabil felszínre potyoghattak az égi vándorok. Ugyanakkor az ír kőzet ezerszer gyorsabban alakult ki, melynek során homok, kavics és a magas hegyekből lezúduló iszap alakult át kőzetté. Ha ezer kilogramm ír feldolgozott kőzetben található krómot célirányosan vizsgáltak, akkor minimális volt az a króm-mennyiség ami égi eredetű. Tehát matematikailag igen kevés a valószínűsége, hogy a két dolog összefüggjön egymással. Így megdőlni kezdett az az elmélet, miszerint a nagy fosszilis földcsuszamlást egy aszteroida-becsapódás okozta.

Schmitz nem adta könnyen magát, célirányos vizsgálatokba kezdett. Kezdetben volt két földtörténeti korszak, a kambrium és a szilur. Ezek közé beékelődött, Lapworthnak köszönhetően az ordovícium. (Ezen korszakok tovább vannak tagolva, korai, közép és késői korszakokra, mely korszakok tovább vannak finomítva…) Bár évmilliókról van szó, mégsem születik meg csak úgy egy új korszak, kell valamilyen különleges, jól mérhető, bizonyítható esemény ehhez. Az akkori tengeri élőlények 60%-a kipusztult. Ez nagyon jól mérhető.  Meteoritikában pl. a vékony csiszolatokat úgy is kell vizsgálni, hogy egy rácsot helyeznek a mintára és meg kell számolni, hány kerek, illetve hány szögletes, már sokkhatásnak kitett kondrum található az adott területen. Ezen arányok értéke befolyásolja, hogy milyen petrológiai osztályba sorolják a meteoritot. Mint azt tudjuk, egy mérés nem mérés, két mérés fél mérés, tehát nem mérés… Van tehát sok mérés, most már számíthatunk szórást… Volt, van egy másik anomália, miszerint az idősebb kőzetrétegek között fiatalabb réteget találtak. Erre a magyarázat lehet a földcsuszamlás, de mi okozta? A harmadik dolog amit észre vettek, hogy az ordovícium és szilur határán a kőzetréteg feltűnően sima felületű, erre a jég magyarázat. Persze ez nem egy hideg téli éjszaka, hanem egy jégkorszak jellemzője. Mivel a Föld stabil pályán kering a Nap körül, a lehűlés okát a Föld légkörének hirtelen megváltozása okozhatta. A fent leírt jelenségeket próbálják az elméletek megmagyarázni.

A lehetséges magyarázatok:
– meteoritzápor
– egy közeli szupernóva hatása
– felfokozott vulkáni és tektonikai tevékenység

Tehát Schmitz, aki egy hatalmas meteorit-záporral magyarázná a jelenséget, sokat kell kutatnia, mérnie és számításokat kell végeznie. Nem elég állítani, hogy egy hatalmas aszteroida vagy annak darabjai ütköztek a Földdel, tények kellenek. Meg kell határozni, hogy mekkora az a tömeg és energia, ami kiválthat egy ilyen mértékű változást az egész bolygó életében. A könnyű válasz: nagy! De ez az állítás ide kevés! Nagy meteoritban sok az irídium. Hol van az a kőzetréteg, ahol feltűnően sok az irídium (pl. olyasmi, mint a sokat emlegetett KT vonal vagy határ tartalmaz)? A kora megegyezik a vizsgált jelenség korával? Megváltoztathatta-e a légkört annyira, hogy kialakuljon egy jégkorszak? Ezekre és még rengeteg más kérdésre kell válaszolni Schmitznek.

Ezért különböző tudományágak szakértőitől kért segítséget. A több, mint 90 db meteorit és kőzetágy alapos vizsgálatába kezdtek. A meteoritekről megállapították, hogy L-kondritok, a mintákat porrá őrölve az elemzés szerint ugyanabból a szülőégitestből származnak. Izotópok segítségével Schmitz ki tudta mérni, hogy a fragmentekben lévő krómszemcsék mennyi ideig voltak kitéve a kozmikus sugárzásnak. Azt tapasztalta, hogy minél fiatalabb a vizsgált szikla, annál több ideig volt kitéve a sugárzásnak, ez is azt támasztotta alá, hogy egy hosszabb ideig tartó meteorit, ill. törmelékhullás nyomait találta meg. Egy 1964-es tanulmány amely először L-típusú kondritnak azonosította a mészkőben talált fosszilis meteoritot, az ún. sokk-életkorát 470 millió évesnek azonosította. Ez egy független mérés volt, az adatok összevágtak. Következett a spektrumanalízis. A vizsgálandó port elpárologtatják és a színképét összehasonlítják lehetséges kisbolygókéval. A mérés eredményeként azt állapították meg, hogy az „eredeti test” illetve, ami maradt belőle, stabil pályán kering. Pályája alapján a Gefion- aszteroidák családjába tartozik. A még napjainkban hulló L-típusú kondritok 20%-a származik a Gefion családból.

A Gefion vagy Gefionian család főleg „S-típusú” kisbolygóból, kb. 100 törzstagból áll. A természeti jelenségekre jellemző a hatványfüggvény-eloszlás. Ez azt jelenti, hogy a kis hatások gyakorisága nagy, a mérsékelt hatásoké kisebb, a nagyobbaké ritka és a nagyon nagy hatásoké igen ritka. Az elmélet arra apellál, hogy a megszámlálhatatlan apró krómszemcsék és a sok apró meteorit megléte miatt, teljesen ésszerű azt feltételezni, hogy nagyobb tömegű, krátert létrehozó becsapódás is érte a Földet az ordovícián korban. Megemlíti a Lockne-krátert Svédországban, vagy a Osmussaar-breccsát Észtországban. Persze ezt nehéz így igazolni, mert a kráterek gyorsan pusztulnak, tehát az üledékes kőzeteket kell vizsgálni a megfelelő földtörténeti korból. A vita tovább gyűrűzött. John Parnell az Aberdeen Egyetemből javasolta, hogy modellezzék, hogy a nagy becsapódások létrehozhattak-e hatalmas földcsuszamlásokat a kontinentális margók környékén. 13-14 hasonló, nagy csuszamlást feltételeznek az ordovíciumban világszerte. Ő külön kiemelte az Angliai Lake District 1500 méter vastag gyűrt, nyírt, hajtogatott üledékét. Persze ezzel nem mindenki értett egyet, mert a masszív földcsuszamlások nem ritkák. A tenger alatti kontinentális lejtők instabillá válhatnak, főleg a tektonikailag aktív területeken.

A Lake District egy vulkáni ív mellett fekszik. A földrengések megmagyarázzák a megcsúszást, nem kell feltételezni egy meteorit becsapódás hatását. 2008-at írunk és még nincs vége a történetnek. A kutatás tovább folyt. Újabb esetleges becsapódási pontokat feltételeznek, most Észak-Amerikában. Ilyen az Ames-kráter Oklahomában, vagy a Decorah kráter Iowaban, a Slate-szigetek krátertó és a Wisconsinban található Rock Elm-kráter. Az jól látszik az ábrán, hogy milyen egyezésekre alapoz Schmitz.

Az ábrát Schmitz és munkatársai készítették 2008-ban, nyolc részre osztva a korai és közép ordovícián korszakot, és az üledékes kőzetvizsgálati eredményeit ábrázolja. A fekete vonal mutatja a biológiai sokszínűséget, a fajok számát. A nagyobb kihalási eseményeket a kék vonal mutatja. A piros vonal mutatja azt, ahol megjelenik a földönkívüli króm és ahol az ozmium izotópok megváltozását mérték (az ozmium egyik vegyülete, az ozmium-tetroxid erősen mérgező, koncentrációja a levegőben nem haladhatja meg a 0,0016 mg/m^3 értéket. A fém már 107 g/m^3 koncentrációban a levegőben tüdő-, bőr- és szemkárosodást okoz. Hét izotópja ismert ezek arányából, a hozzáértők jól ellenőrizhető következtetéseket tudnak levonni). Látszik, hogy a fekete minimum és a piros maximum jól összevág. Schmitz elmélete, amit „Great Ordovician Biodiversification Event – GOBE” névvel illetett, arról szól, hogy egy környezeti katasztrófa miatt tömeges kipusztulás következett be, de fontos, hogy nem pusztult el minden élőlény. A hatalmas meteorzápor ill. nagyobb becsapódások miatt a Föld felszíne is változásokat szenvedett, tagoltabbá vált, növelve a lehetséges élőhelyek sokszínűségét. Lényeges változás történt a légkör összetételében. A légköri oxigén megnövekedett, és az abból képződő ózonréteg a felszínre érkező ibolyántúli sugárzást minimálisra csökkentette. Ezzel megnyílt a lehetőség a növények szárazföldi elterjedésére (az ózonréteg jelentősen a szilur végére vastagodott meg annyira, hogy a szárazföldi élet tömegesen megjelenhessen). Az elmélet pozitív szemléletére az utal, hogy a név nem a kihalási hullámot, hanem az azt követő, az élet burjánzására, a flóra és fauna hatalmas és gyors fejlődésére utal. Az elmélet még a mai napig sem bizonyított. A lényeg, hogy volt az adott időszakban kiemelkedő meteorithullási esemény, de azt nem állíthatjuk, hogy ez akkora volt, hogy módosítsa a 470 millió évvel ezelőtti Föld klímáját, biológiai arculatát. A legutolsó cikk a témáról, amit találtam, 2013-as.

Ez volt a 2014-es cikk vagy dolgozat.

Mit találtam róla most? Először is megosztom a Metageologist 2013 Szeptember 30-án megjelent cikkét, hogy az érdeklődő eredetiben is olvashassa, amit itt összefoglaltam [2]. Két dolog miatt is érdekes és megéri elolvasni: egyrészt itt láthat szép fotókat, másrészt legalul van egy komment. Ezt a Metageologist írta 2017. 02. 04-én. Egy link látható, ami a Sience Daily oldalára viszi az érdeklődőt. A cím nem körülményeskedik sokat…

A mítosz összeomlott: nincs kapcsolat a hatalmas aszteroida becsapódás, és a biológiai sokféleség növekedése között [3]. Pár mondatban összefoglalom, hogy miként omlott össze a mítosz. Állítás: az ordovicianban volt egy hatalmas meteorzápor, ez megváltoztatta a földi környezeti feltételeket, éghajlati változásokat okozott, a légkör összetétele is megváltozott. A domborzati viszonyok átalakultak, fokozódott a vulkanizmus. Az élőlények 60%-a kipusztult ugyan, de a megmaradt élet, amely túlélte ezt a kataklizmát, hihetetlen fejlődésen ment keresztül. Cáfolat: A technika fejlődésével sokkal pontosabban tudták megállapítani a fosszíliák korát. A régebbi mérés a fosszíliák korát pontatlanul határozta meg. Most a cirkonkristályok elemzésével nagyon pontosan megállapítható az az időpont, amikor a cirkonkristály a felszínre kerül. Ez megegyezik a megnövekedett vulkáni aktivitás korával. Az adódott, hogy a meteorzápor később történt, legalább 2 és fél millió évvel, mint a megnövekedett vulkáni aktivitás miatt a felszínre került láva, és az ebben található cirkonkristályok kora. Ebben a hamurétegben az „új élőlények” fosszíliái is megtalálhatók. Tehát a meteorzápor nem okozhatta a tömeges kihalást. A cirkonkristályos kormeghatározásról is csak pár mondatot írok, mert kiváló linkeket adok a cikk végén. A régi (>50000 év) vulkánkitörések legelterjedtebben használt geokronológiai módszere a cirkonkristályokon végzett kormeghatározás. A cirkónkristály egy cirkónium-szilikát (ZrSiO4) ásvány. Ezek az emberi hajszál vastagságával összemérhető, tehát 100-300 mikrométer nagyságú szemcsék. Ezen kristályok esetében a kristályszerkezetben lévő „hibák” segítenek a kormeghatározásban. Az ásványok kristályrácsába a fő alkotókon kívül, elemhelyettesítéssel beépülhetnek nyomnyi mennyiségben idegen elemek is, ha azok ionjainak mérete és töltése közel van a fő komponenséhez. A cirkon ásványban így a cirkóniumot helyettesíteni tudja a hafnium, továbbá az urán és a tórium is. Az uránnak két radioaktívan bomló, instabil izotópja van, a 238 és 235 tömegszámú izotópok, míg a tórium izotópjai közül a 232 tömegszámú atom stabilizálódik radioaktív bomlással, a végállapot valamilyen ólomizotóp (206, 207, 208 izotópok). A vulkáni képződményből kinyert cirkonkristályokon történik az izotópmérés. Két fontos dolgot kell figyelembe venni. Az első, hogy az izotópok mennyiségéből, az adott izotóprendszerre jellemző felezési idő figyelembe vételével meg tudjuk határozni a jó keletkezési időt, fontos feltétel, hogy a keletkezés után az izotópok a kristályban maradjanak, azaz zárt maradjon a rendszer (azaz csak annyi származék-izotóp legyen, ami a radioaktív bomlás során keletkezett és annyi instabil izotóp, ami a radioaktív bomlás után visszamaradt). Ez az állapot különböző izotópok, különböző ásványok esetében más és más hőmérséklet elérése után áll be. A cirkonkristály akkor válik ki, ha a kőzetolvadékban a cirkónium mennyisége már olyan értéket ér el, hogy az olvadék „túltelítetté” válik ebben az elemben. A cirkonkristályban kb. 900 Celsius fok alatt már nem távoznak el az urán és az ólom izotópok, azaz a kristályosodás a záródási hőmérséklet alatt történik. Viszont a héliumizotóp csak 180 Celsius fok alatt marad benn a kristályban. A mérés elve az, hogy a láva a felszínen percek – órák alatt lehűl 180 fok alá, tehát a héliumizotópok is a kristályba zárva maradnak. Tehát, amennyiben megmérjük a cirkonkristályban lévő héliumizotópot és az urán- és ólomizotópokat, akkor ki tudjuk számolni, hogy a vulkánkitörés óta mennyi idő telt el. A kormeghatározáshoz szükséges izotópok mennyiségét lézerablációs ICP-tömegspektrométerrel végzik. Ez persze nem ilyen egyszerű ahogy leírtam, ez nagyon bonyolult mérés [4]. Tehát szerintem szerencsés gyakran ellenőrizni néhány tudományos állítást, hiszen a tudomány nem az igazságot írja le, hanem a legvalószínűbbet.

Ez így van jól!

Dénes Lajos

Források:
[1] http://www.csillagvaros.hu/forum/viewtopic.php?f=24&t=2254&start=630#p46780
[2] http://all-geo.org/metageologist/2013/09/the-great-ordovician-meteor-shower/
[3] https://www.sciencedaily.com/releases/2017/02/170203110156.htm
[4] http://tuzhanyo.blogspot.hu/2018/03/piciny-cirkon-kristalyokbol-kinyert-ido.html