Így észleld a Marsot!

Szerző: Király Amanda

A Mars már megfigyelhető a hajnali égen, mondhatjuk, hogy a Mars-észlelések szezonja lassacskán elkezdődik. Az oppozíció október 14-én lesz, és az év hátralévő részén már végig észlelhető.

Szembenállás (oppozíció) idején – amikor a Mars a legközelebb van hozzánk – szabad szemmel is az égbolt meghatározó égiteste. Vörös fénye alapján könnyű megtalálni. Kisebb távcsővel is meg lehet figyelni korong mivoltát, és kisebb részleteket is meg lehet rajta figyelni. De a Marsnál – ahogy a többi bolygó észlelésénél is – a méret a lényeg. Minél nagyobb átmérőjű távcsövet használsz, annál több részletet figyelhetsz meg rajta, és örökíthetsz meg. Átmérő/ár arányban a dobson távcsövek a legjobbak, de természetesen bármilyen más rendszerű távcső is megfelel.

Használj minél nagyobb nagyítást. A sarki jégsapkákat megközelítőleg 100x-os nagyítástól pillanthatod meg, és értelemszerűen, minél több részletet akarsz megfigyelni, annál nagyobb nagyításra lesz szükséged. Nyilván, minden távcsőnél van egy maximális hasznos nagyítás, és ez nagyobb átmérőjű távcsövek esetében nagyobb.

A Mars esetében nagyon jól használhatóak a szűrők: egy neutrális szűrő használatával a szemnek kényelmesebb lehet a Mars hosszabb távú megfigyelése, így rajzos észleléshez, vagy távcsöves bemutatókhoz ideális.


Marci1954 nevű felhasználó képe az asztrofoto.hu-n. Jól láthatjuk a különböző
színszűrőkkel készült képek közötti különbséget
(és az ebben a mondatban fellelhető, majdnem hat szóból álló alliterációt.)

Narancs és vörös színszűrők növelik a kontasztot azzal, hogy a magasabban fekvő területek vöröses árnyalatát átengedik, míg a “tengerek” szürkés-barnás színét kevésbé.

A világosabb sárga színszűrők a pajzsvulkánokat, és a sarki jégsapkákat emelik ki.

Kék szűrőt használva pedig a bolygó légkörében lévő felhőket figyelhetjük meg, különösen az egyenlítő mentén.

Az infravörös szűrők előnyösek lehetnek minden bolygó megfigyelése szempontjából, hiszen abban a tartományban a légköri nyugodtság jobb, és apróbb részletek is megfigyelhetővé válnak.

Infravörös szűrővel készült Mars animációk. Fotó: Bajmóczy György Forrás: asztrofoto.hu

A mellékelt képek CCD kamerával készültek, de erre nem feltétlenül van szükséged.

Arról már nem is beszélve, hogy habár a rajzos észlelés manapság nem tartozik a legnépszerűbb amatőrcsillagászati módszerek közé, nem kevésbé fantasztikus észlelést tudsz készíteni a Marsról némi ügyességgel és jó minőségű színes ceruzával. Ugyanakkor ebben az esetben meg kell említenem, hogy észlelés közben a vörös lámpa fényénél bosszúságban lehet részed, ha piros vagy narancssárga ceruzával szeretnél rajzolni: ezek ugyanis nem látszanak az észlelőlámpák fényében. Én fekete-fehérben dolgozom ki a rajzom ott helyben, majd rendes lámpa fényénél másnap kapja meg a színeket emlékezetből.

Az észlelésed természetesen töltsd fel az észlelésfeltöltőkre, és oszd meg a csillagászati Facebook-csoportokban is!

Naprendszerünk más léptékben

Szerző: Szklenár Tamás

Mindennapi életünkben könnyedén fel tudunk dolgozni olyan távolságokat, amelyek számunkra megszokott léptéket képviselnek, így nem esik nehezünkre tervezni olyan távolságokkal, amelyek lakóhelyünkön belül vagy hazai városok között jellemzőek. Külföldi utazások, hosszabb utak alkalmával tudatosul igazán bennünk bolygónk valós mérete. A Föld önmagában hatalmas és a modern közlekedési eszközök nélkül, gyalogosan bejárni élethosszig tartó küldetés lenne. Viszont amint kilépünk a bolygóközi, sőt csillagközi térbe, a mindennapi távolságok eltörpülnek a Világegyetem méretei mellett.

Ahhoz, hogy ezeket a léptékeket megfelelően ábrázolhassuk, arányosan átméretezett modellekre van szükségünk. Így nem csak az égitestek egymáshoz viszonyított méretét, hanem azok távolságát is érzékeltetni tudjuk. Ebben a cikkben olyan méretskálát alkalmazunk, amelyet könnyedén elkészíthet mindenki, felhasználható bárki számára, aki érdeklődik a téma iránt, de az oktatásban, szakkörök számára is hasznos lehet. Számításaink az égitestek jelenleg ismert átlagos sugarán és Naptól vett távolságán alapulnak.

Kezdjük egy egyszerűbb esettel és próbáljuk meg modellezni a Föld és Hold rendszerét. Földünk átlagsugara – kerekítve – 6373 km, így átmérője 12 746 km, a Hold esetében utóbbi 3475 km (3,7-szeres méretkülönbség). A két égitest átlagos távolsága 384 399 km. Ez még egy viszonylag könnyebben elképzelhető távolság annak, aki sokat vezet élete során. Olyan modellt kell készítenünk, amely befér egy nagyobb szobába, esetleg osztályterembe. Legyen a két égitestünk arányosan megváltoztatott távolsága 5 méter! Ebben az esetben Földünk modellje 16,6 cm átmérőjű, míg a Hold átmérője 4.5 cm. Előbbi számára használhatunk egy 2-es méretű futball- vagy kézilabdát, utóbbi részére egy pingponglabda is megfelelő.

Érdekességképpen vegyük hozzá Napunkat is ehhez a modellhez! Központi csillagunk átmérője ebben az esetben egy nagyobbacska busz hossza, kerekítve 18 m, amelyet a már elkészített Föld-Hold modelltől 2 km-re kellene elhelyeznünk.

Ebből rögtön látszik, hogy amint kilépünk a Föld-Hold rendszerből, a méretek modellezése igen problémássá válik. Kis számolással és egy nagyobb léptékű kicsinyítéssel azonban megoldható a dolog. A Nap átmérője kerekítve 110-szerese bolygónkénak. Ez lesz a kiindulópontunk. A modellünket pedig helyezzük el egy focipályán, amelyből bárki könnyűszerrel talál egyet az országban. A futballpályák hivatalos mérete igen tág skálán mozog, a csatolt képen látható pálya hossza 109 méter (a cikk írója szülővárosának, a szarvasi sportpályának méretét használta).

A Naprendszer „focipálya modell”

Új modellünkben a Nap átmérője 110 mm, míg Földünké 1 mm. A valóságban a két égitest távolsága 150 millió km, amelyet 1 Csillagászati Egységnek is nevezünk. Helyezzük napmodellünket, a 11 cm átmérőjű gömböt (labdát) a gólvonalra, ettől kezdve ő lesz a kapusunk! Ettől 11,86 m-re lesz Földünk, így szinte kijelöli a büntető pontját is. A további távolságokat és méreteket táblázatos formában láthatják olvasóink.

Naprendszerünk négy kőzetbolygója, a Merkúr, Vénusz, Föld és a Mars helyezkedik el legközelebb központi csillagunkhoz. Modellünkben a Mars már éppen nem fér a tizenhatoson belülre.

A Mars és a Jupiter között elhelyezkedő aszteroidaöv még bőven ebben a térfélben található.

A Jupiter, Naprendszerünk legnagyobb bolygója már a másik térfélre kerül, a Szaturnusz pedig már éppen lecsúszik a pályáról.

Amennyiben szeretnék az Uránuszt és a Neptunuszt is ábrázolni, úgy még több egymás mögé festett pályára van szükségünk. Az Uránusz 228 m-re lenne a kapustól (Nap), míg a Neptunusz távolsága ebben a méretskálában 357 m-nek adódna. A hányattatott sorsú Plútó közel fél km-re kerülne kapusunktól.

Nem teljesen tisztázott, hogy Naprendszerünk határa hol húzódik, nem tudjuk pontosan, hogy mikor lépünk át a csillagközi térbe. A Naprendszer jelenleg elfogadott sugara körülbelül 100 000 Csillagászati Egység, ez mintegy 1,5 fényév. Focipálya modellünkben ez a határ 1186 km-re lenne, egészen Amszterdam városáig kellene utaznunk.

Miután már képzeletben kiléptünk a csillagközi térbe, látogassuk meg legközelebbi csillagszomszédunkat! A Naphoz legközelebb elhelyezkedő csillag a Proxima Centauri, amelynek távolsága 4,2 fényév. Jelenlegi technológiai eszközeinkkel ez emberi időskálán elérhetetlen távolság, de kis modellünkben elég, ha Izlandig utazunk, Reykjavík városáig.

Égitest Modell mérete Modell távolsága
Nap 110 mm
Merkúr 0,4 mm 3,65 m
Vénusz 0,95 mm 8,6 m
Föld 1 mm 11,86 m
Mars 0,5 mm 18 m
Jupiter 11,2 mm 61,7 m
Szaturnusz 9,5 mm 113,6 m
Uránusz 4 mm 228 m
Neptunusz 3,9 mm 357 m
Plútó 0,19 mm 474 m
Naprendszer határa 1186 km
Proxima Centauri 17 mm 3183 km

Valószínűleg már kellőképpen zsong fejünk a sok-sok számadattól és Naprendszerünk, illetve az Univerzum méreteitől, azonban egy utolsó adattal még szolgálnunk kell. Naprendszerünk a Tejútrendszer nevű galaxis, egy hatalmas és lenyűgöző csillagváros részét képezi, amelyben jelenleg körülbelül 200-400 milliárd csillag található. Galaxisunk modellbeli átmérője éppen akkora lenne, mint Földünk és a Nap valós távolsága, 1 Csillagászati Egység, vagyis 150 millió kilométer. Ebben a hatalmas méretskálában pedig ott a mi focipálya modellünk, amely talán egy kicsit segíthet a körülöttünk lévő világ méreteinek megértésében.

Vulcan, a sosemvolt bolygó

Szerző: Kovács Gergő

1840-et írunk. A francia matematikus, Urbain Jean Joseph Le Verrier a Merkúr pályáját tanulmányozta. Munkáiban a planéta mozgását a newtoni fizika eszközeivel akarta előrejelezni, azonban a bolygó előre kiszámított pályája és az égitest tényleges mozgása között – a legpontosabb számítások ellenére – folyamatosan maradtak különbségek. Ezt az eltérést a matematikus egy eddig felfedezetlen, a Nap és a Merkúr közt keringő bolygónak tulajdonította. Az égitestet Vulcannak/Vulcanusnak nevezte el, a tűzhányók, kovácsolás és sivatagok római istene után.

Urbain Jean Joseph Le Verrier (1811-1877)

Le Verrier tézisét az is alátámasztotta, hogy a pályaháborgásokat figyelembe véve már sikerült felfedeznie egy bolygót, a Neptunuszt, 1846-ban. Az égitestre az Uránusz pályájában keletkező zavarok vizsgálata során bukkant rá, a Neptunusz pedig ott volt, az égbolt azon szegletében, ahol azt Le Verrier előre kiszámította. A sors iróniája, hogy az angol John Couch Adams számításai is helyesek voltak a Neptunusz térbeli helyzetét illetően, azonban Sir George Airy, angol királyi csillagász és a Cambridge-i obszervatórium vezetője, James Challis “mulasztásai” által a Neptunusz felfedezése Le Verrier és a berlini csillagda igazgatója, Johann Gottfried Galle érdeme lett.

Le Verrier riadóztatta a csillagász “társadalmat”, melynek köszönhetően a Vulcan a nemzetközi bolygóvadászat fő célpontja lett. Egyesek, például Edmond Modeste Lescarbault, saját készítésű teleszkópjával látni vélte a bolygót, mint a Nap korongja előtt gyorsan elhaladó apró pontot. A szkeptikus hangok és a bizonytalan megfigyelések ellenére Le Verrier elmélete masszívan tartotta magát, még az 1877-ben bekövetkező halála után is. Sőt, egy 1878-ban bekövetkezett napfogyatkozás kiváló alkalmat kínált (volna) a Vulcan megfigyelésére. Neves csillagászok vélték látni a bolygót, a nagy hírverés után, miszerint felfedezték a bolygót, kiderült, hogy csillagok voltak csupán…

A Vulcan-t még mindig nem látta senki, továbbá a Merkúr különös, gravitációs módon zavart (ún. perturbált) mozgásának oka továbbra is ismeretlen maradt. Ennek ellenére rengeteg tudós, köztük hazai csillagászok is, felfokozott érdeklődést tanúsítottak a bolygó iránt:


Kassai Raisz Miksa: A vulkán bolygó

Több év óta a naprendszerhez tartozó bolygók abszolút mozgása mathematikai törvényeinek kiszámításával foglalkozván, számításaimnak egyik eredménye azon következtetésre vezetett, hogy a Nap és Merkur közt még egy bolygónak – a több csillagásztól is feltételezett – Vulkán bolygónak kell léteznie. Erre nézve számításom eredménye a következő:

A VULKÁN bolygó átmérője (tengelye) = 724.9752 km.; útja pályájában egy nap alatt 5,502,355 km.; egy óra alatt 229,264 km.; tropikus mozgása egy nap alatt 98,059.16 km.; a Naptól való távolsága 11,436,932 km. Évi periodikus mozgását 13.21651 nap alatt végzi.

Természettudományi Közlöny XCIII. kötet, 202-ik füzet

1886 június


A Vulcan keresése még több évtizedig folytatódott, de tényleges felfedezés soha nem született, hisz’ soha nem is létezett ez a planéta. Majd 1915-ben bombaként robbant a tudományos világba Einstein relativitáselmélete, mely tökéletesen megmagyarázott mindent, így a Vulcan nemlétét is: az einsteini fizika szerint a Nap óriási tömege miatt képes “meggörbíteni a teret és időt”, a Merkúr pedig olyan közel kering központi csillagunkhoz, hogy már ebben az eltorzult téridőben kering. Az einsteini fizika így magyarázatot adott a Merkúr különös mozgására, többek között a bolygó perihéliumvándorlására is. Ezt a jelenséget, vagyis az égitest napközelpontjának folyamatos mozgását a klasszikus, newtoni fizika csupán egy másik égitest zavaró hatásával tudta megmagyarázni.

A Merkúr perihéliumvándorlása

Ahogy Isaac Asimov mondta, a Vulcan örökre le lett radírozva az égboltról. A csillagászok nyilvántartásaiból ki-, a térképekről lekerült. A korábban történt bolygóészlelések pedig minden bizonnyal napfoltok vagy csillagok voltak. A Vulcan története pedig arra tanította az embert, hogy a természet törvényei bonyolultabbak, mint hinné.

Források: [1] [2] [3] [4]

“Bolygómorzsák”

Szerző: Kovács Gergő

E címmel illetem azon rövid, egy-két mondatos, grafikailag egységes köntösbe öltöztetett planetológiai érdekességeket, melyek tavaly év vége óta közösségi oldalunk bejegyzéseinek gerincét adják.

Egy hirtelen támadt ötletből születtek ezek a “morzsák“, melyek már e sorozat indulásakor osztatlan sikert arattak: számos pozitív visszajelzést kaptunk, Olvasóink szerint megjelenésük igényes, nyelvezetük könnyen megérthető.

Ezen “planetológiai egypercesek” célja a minél egyszerűbb és letisztultabb módon történő ismeretterjesztés, módszerük pedig a rövid, de érdekes információk közlése Naprendszerünk égitestjeiről.

Bízunk benne, hogy sok évadosra és sok epizódosra tervezett sorozatunk képes lesz egy stabil támpontot adni a planetológia iránt érdeklődőknek, a száraz számadatokon túl.