Könyvajánló: Hédervári Péter – Ismeretlen (?) Naprendszerünk

A könyv szerzője, Hédervári Péter (1931-1984) földrajztanár, természettudományi doktor, csillagászati ismeretterjesztő, tucatnyi könyv és több száz (!) cikk szerzője, jelen művében a Naprendszerről (az űrkutatás forradalmi eredményeinek köszönhetően) az akkor legfrissebb tudományos eredmények tükrében ír. Célja nem a Naprendszer megismerésének történeti háttere, továbbá nem is annak kialakulásának bemutatása, hanem a Nap és a körülötte keringő égitestek bolygótani értelemben legnaprakészebb ismertetése.

Hédervári Péter: Ismeretlen (?) Naprendszerünk. 1986, Kossuth kiadó. ISBN 963 09 2678 4 Univerzum Könyvtár.

A könyv nagy erőssége, hogy az ismeretanyag fotókban, ábrákban, táblázatokban igen gazdag. Továbbá nem rejti véka alá, hogy egy befejezetlen mű (a címe is erre utal), hisz’ Naprendszerünk megismerése egy soha véget nem érő történet: az új űrszondákkal, az egyre nagyobb teljesítményű távcsövekkel és egyre kifinomultabb képalkotási technikákkal egyre nő tudásanyagunk, új tudományos eredmények születnek, illetve új kérdések fogalmazódnak meg…

A Jupiter, Szaturnusz és az Uránusz gyűrűrendszerének összehasonlító ábrája.

A könyvről és szerzőjéről Rezsabek Nándor is megemlékezett Az ismeretlen (?) Hédervári Péter c. emlékkötetben.

Értékelés: 10/10

Szerző: Kovács Gergő

Könyvajánló: Arthur C. Clarke – 2010: Második űrodisszeia

Tavaly volt 50 éves a science fiction időtlen alkotása, a 2001: Űrodüsszeia. Ezt a szálat folytatva, most szeretném bemutatni a könyv (és a film) folytatását: a 2010 – Második űrodisszeiát.

Ahogy az előző írásomban, úgy most is ki kell térnem pár különbségre a két mű közt. Már most le kell szögeznem azt, hogy bár a könyv címében (2010 – Második űrodisszeia) nincs “újítás” az első kötethez képest, az e könyvből készült film címe már a “2010 – A kapcsolat éve” nevet viseli. Továbbá, ahogy a 2001-ről szóló cikkben, itt sem tudok elmenni film mellett anélkül, hogy arról is ejtsek – a teljesség igénye nélkül – néhány szót.

2010-et írunk. Dave Bowman, utolsó rádióadását (“Istenem, tele van csillagokkal!“) követően nyomtalanul eltűnt, űrhajója, a Discovery One pedig azóta rója köreit a Jupiter körül (fontos itt kitérni arra, hogy a könyv és a film is a Jupiteren “játszódik”, ellentétben a 2001 könyvváltozatával).

A hidegháborús versengés közepette nemcsak az amerikaiak, de a szovjetek is el akarnak jutni a bolygóhoz, a sors pedig úgy hozta, hogy az oroszok fognak előbb odaérni. Ők pedig sikeresen oldalukra állították a Jupiter-misszió szellemi atyját, Heywood Floydot, akit Bowman eltűnése miatt személyesen is terhel a bűntudat. Így Floyd, Dr. Curnow és Dr. Chandra társaságában csatlakozik a szovjetekhez, akik a Leonov nevű űrhajón elindulnak, felkutatni Bowmant. A könyvben rövid időre feltűnik egy harmadik fél, Kína is, a Csien nevű űrhajóval, ők azonban egy furcsa “baleset” miatt hamar kikerülnek a cselekményből…

A Jupiterhez érkezvén megtalálják a bolygó körül keringő Discoveryt, amit azóta már vörösre festett az Io vulkánjaiból származó kén. Az űrhajóba átszállva nyomát sem találják életnek, azonban Dr. Chandra sikerrel újraaktiválja HAL9000-et. A cselekmény azonban jóval előrébb jár az űrhajósoknál: megjelenik a maga fenyegető módján a “TMA-2“,  azaz a Bowmant elnyelő monolit, Floyd pedig egy titokzatos üzenetet kap, miszerint el kell hagyniuk a Jupitert, míg nem késő. A férfi rájön, hogy maga Dave Bowman üzent neki, HAL pedig figyelmezteti, hogy a monolit önállósította magát: miután nyomtalanul eltűnt, kisvártatva megjelent a Jupiter légkörében, percről-percre több millióvá sokszorozva magát, fekete foltot alkotva a bolygó légkörében. A feketeség lassan elnyeli a Jupitert, mely az immár menekülő űrhajósok megrökönyödésére zsugorodásnak indult, hogy azután, egy hatalmas robbanás és a hidrogénfúzió beindulása után Jupiterből Lucifer legyen. Bowman pedig egyértelmű üzenetet küld az embereknek, mely hosszú időre meghatározza jövőjüket.

Mit lehet összességében elmondani a 2010-ről?

Jó könyv? Igen. Megállja a helyét a 2001 után? Igen.
Jó film? Igen. Megállja a helyét a 2001 után? Sajnos nem.

A könyv nagyszerű folytatása lett a 2001-nek, teljes mértékben magán viseli szerzőjének jellegzetes stílusát, melyben a feszültség a könyvek végére lassan a tetőfokára hág. Mindeközben Bowman és a monolit rejtélye átszövi a könyv minden oldalát. Nagyszerű leírásainak köszönhetően magunk elé képzelhetjük többek között a Jupiter felhőrendszerében tomboló, Föld-méretű viharokat éppúgy, mint az Io hatalmas, fortyogó vulkánokkal teli forró “kénköves poklát”, vagy az Europa fagyott, jeges világát.

Ha úgy gondolunk a filmre, mint egy önálló science fiction-re, egy könnyed, élvezhető, bár sok helyen nehezen értelmezhető művet kapunk. Emeli a színvonalát, hogy apró “easter egg”-ként Stanley Kubrick és Arthur C. Clarke is feltűnik a filmben, utóbbi kétszer.

Ha azonban úgy gondolunk a filmre, mint a 2001 folytatására, akkor…inkább ne gondoljunk rá így! Ha csak a látványvilágról kell szóljak, már alulmaradt az utód a 2001-el szemben. Az idealizált jövőképről, a hideg és végtelen űr érzéséről, a sokszor tapintható feszültségről, a film akárhogyan értelmezhető mondanivalójáról, illetve a műben megjelenő számtalan szimbólumról nem is beszélve…mondjuk, amikor Floyd hátrapillantva meglátta Bowmant, abban az egy pillanatban minden benne volt, aminek kellett. Kár, hogy ez csak egy pillanat volt.

Discovery és Jupiter: a spermium és a petesejt?

A 2001 önmagában egésznek, páratlannak és bonthatatlannak mondható. A 2010 – A kapcsolat éve inkább tekinthető a könyv megfilmesítésének, mint a film szerves folytatásának. Ennek ellenére bátran ajánlom mind a filmet, mind a könyvet.

Értékelés: 8/10

Szerző: Kovács Gergő

Január 21: Teljes holdfogyatkozás – szuperlatívuszok nélkül

Az újév első jelentős csillagászati eseménye a január 21-én, 05:41-06:43 között lezajló teljes holdfogyatkozás lesz, mely az évtized utolsó ilyen jelensége.

A fogyatkozás fázisainak időpontjai, helyi idő szerint a következőek lesznek:
Félárnyékos fogyatkozás kezdete:          03:36:30
Részleges fogyatkozás kezdete:              04:33:54
Teljes fogyatkozás kezdete:                        05:41:17
Teljes fogyatkozás vége:                              06:43:16
Részleges fogyatkozás vége:                    07:50:39
Félárnyékos fogyatkozás vége:                08:48:00

 

A fogyatkozás láthatósága

Azonban sajnos úgy tűnik, ezt az évet sem ússzuk meg az Internetbe betörő “szuperhold”, vagy inkább “szupervérfarkashold” nélkül. Sajnos minden évben van legalább két olyan esemény, amikor az egyébként teljesen “normális” látványú Holdra válogatás nélkül aggatnak vérhold, eperhold, szuperhold, farkashold, megahold, gigahold, stb. jelzőket, teljesen indokolatlanul. A csillagászok, függetlenül attól, hogy műkedvelő amatőrök vagy hivatásosak, fogják a fejüket. Jómagam pedig nem értem, hogy miért kell egy eddig is leírható természeti jelenségből cifrábbnál cifrább jelzőket használva csinnadrattát csinálni… legalábbis a kattintásvadászaton túl.

Hol is kezdjem? A (szenzációhajhász) média a szuperhold kifejezést a földközeli teliholdra használja, azonban le kell szögezni: hiába van kb. 50 000 kilométerrel közelebb hozzánk égi kísérőnk, a mindössze 12 százalékkal nagyobb látszó átmérőt az emberi szem nem érzékeli. A Hold (és a Nap) csupán a horizont közelében látszik nagyobbnak, ez azonban csak a légkörben található vízcseppek fénytörő hatása miatt van. Más lesz attól valami, ha fényes papírba csomagoljuk? Nem.

A földközelben és a földtávolban lévő Hold látszó méretbeli különbsége

Holdunk látványa épp akkor az igazán szuper, amikor nincs teli, hanem súroló fényt kap. A legszebb újhold után néhány nappal. Ilyenkor sarlója még vékony, a fény-árnyék határvonalán (az ún. terminátoron) meteoritbecsapódások láthatóak, a Földről visszaverődő napfény pedig szürke derengésbe borítja a Hold árnyékos felét.

Kísérőnk az újhold után pár nappal

Ezek után már mondanom sem kell, hogy ugyanezt gondolom a vérholdról és a többi fantázianévről. Egy honlapon lehetett olvasni azt a mondatot, miszerint szuperholdkor történő fogyatkozás idején a Hold színe vörös lesz. Azt azonban elfelejtik megemlíteni, hogy minden holdfogyatkozáskor ilyen színű…

Adj erőt…

Mit mondhatnék zárásként? A természeti jelenségek, függetlenül attól, hogy az égen vagy a földön láthatóak, szuperlatívuszok nélkül sem veszítenek látnivalójukból. Ahhoz azonban, hogy valóban észrevegyük őket, ne csupán akkor nézzünk az égre, amikor “szuperholdat” kiáltanak.

A 2018. július 27-ei holdfogyatkozás a szerző montázsán

Szerző: Kovács Gergő

 

‘Oumuamua: van-e új (egy másik) Nap alatt?

Az elmúlt napokban szinte felrobbant az Internet attól a cikktől, melyet a Harvard Smithsonian Asztrofizikai Központ két munkatársa, Shmuel Bialy és Avi Loeb írt az ‘Oumuamua-ról (melyről itt írtunk egy összefoglalót). A publikáció szerint a Naprendszerünkbe első alkalommal kívülről érkező égitest valójában egy idegen civilizáció alkotta űreszköz volt, mely véletlenül vagy a készítői által szándékosan sodródott Naprendszerünkbe.

Fantáziarajz az ’Oumuamua-ról (ESO / M. Kornmesser)

Az elmélet meglehetősen vad és gyenge lábakon álló. Mégis, mik azok a dolgok, melyek szokatlanná teszik ezt az égitestet?

  • A pályája: ellipszis vagy parabola helyett hiperbola, ami azt jelenti, hogy “nem ér körbe”, az ‘Oumuamua így soha nem tér vissza Naprendszerünkbe.
  • Az alakja: egyáltalán nem illik bele a Naprendszer égitestjei közé: az ‘Oumuamua 400 méter hosszú, 40 méter széles, szivar-alakú égitest.
  • A sebessége: a csillagközi térből Naprendszerünkbe 26,4 km/s-mal (95040 km/h) érkezett, perihéliumban 87,3 km/s-ra (314280 km/h) gyorsult fel.

Ezek miatt természetes, hogy sokakban felmerül a gondolat, hogy az ‘Oumuamua nem természetes eredetű objektum. És bár nem lehet száz százalékosan kizárni a mesterséges eredetet, az égitestet körüllengő bizarr dolgokra van tudományos magyarázat:

Az Oumuamua pályája (Wikipédia)

  • A pályája: bár szokatlan de akárcsak a parabola vagy az ellipszis, a hiperbola is szabályos pályának tekinthető.
  • Az alakja: szokatlan formáját teljes mértékben megmagyarázza egy tanulmány, mely szerint ha egy monolitikus (egy tömbből álló) égitest elég hosszú ideig (milliárd évek) bolyong az űrben, akkor a mikrometeoritok okozta természetes kopás végállapotában létrejöhet ez a hosszú, keskeny forma.
  • A sebessége: nemrég már hírt adtunk arról, hogy kutatók egy csoportja talált néhány csillagot, melyek az ‘Oumuamua forrás-égitestjei lehetnek. Ezen csillagok valamelyikének létrejöttekor lökődhetett ki az ‘Oumuamua az intersztelláris térbe. A sebességét azonban jobban magyarázhatjuk egy kettős rendszerből való kilökődéssel, ilyet azonban (még) nem találtak. Így lehetséges, hogy az égitest sokkal régebb ideje járja a csillagközi teret.

Az ‘Oumuamua-val kapcsolatban egy klasszikus idézet jut eszembe:

“A bizonyíték hiánya nem a hiány bizonyítéka!”

A bulvársajtó által felfújt és mára tényként kezelt hírt olvasva mind szeretnénk hinni, hogy nem vagyunk egyedül a Világegyetemben, de addig, amíg nincsenek perdöntő bizonyítékok, nem jelenthetjük ki biztosan, hogy az ‘Oumuamua egy (talán már letűnt) civilizáció küldötte. Az esély természetesen mindenre, úgy erre is megvan, azonban, ha nem tudjuk ezt mivel alátámasztani, hiba lenne valótlant feltételezni. Az ‘Oumuamua pedig már jóval túl van a Jupiter pályáján, így elég kétséges, hogy sok újat fogunk róla megtudni a jövőben.

Szerző: Kovács Gergő

Kovács Gergő: Marsközelben

Tizenöt évvel a nagy, 2003-as Mars-közelség után, 2018. július 27-én a vörös bolygó ismét rekord közel, 57 millió km-re közelítette meg Földünket. Ez alkalomból szeretném planetológiai vonatkozásban mélyrehatóbban bemutatni a Marsot.


A Mars láthatósága (Forrás: ALPO).

A Mars Naprendszerünk negyedik, egyben legkülső kőzetbolygója. Átmérője körülbelül fele akkora, mint a Földé, felszíne körülbelül megegyezik bolygónk szárazföldjeinek összterületével, forgástengelyének hajlásszöge és tengelyforgási ideje pedig szintén közel azonos bolygónkéval. Két hold kering körülötte, a Phobosz és a Deimosz, melyek eredetileg az aszteroida-övezetből befogott apró égitestek. Előbbinek, a Phobosznak a bolygótól való kis távolság miatti keringési sebessége nagyobb, mint a Mars tengelyforgásának sebessége. Így nyugaton kel és keleten nyugszik, kétszer egy marsi nap alatt.


A Mars és a többi belső bolygó 2018.júl.27-ei helyzete. (Kép: Sun Moon and Planets)

A Mars fontosabb adatai [1]
Egyenlítői átmérő:                   6794,4 km
Átlagos naptávolság:             227 940 000 km
Pálya excentricitása:              0,0934
Keringési idő:                             686,98 nap
Keringési sebesség:               24,13 km/s
Tömeg:                                          6,4*10^23 kg
Tömeg (Föld=1):                        0,107
Sűrűség:                                       3,9 g/cm^3
Tengelyforgási idő:                 24,66 óra
Tengelyferdeség:                    25,2°
Minimum hőmérséklet:       -140°C
Átlag hőmérséklet:                -63°C
Maximum hőmérséklet:      +20°C
Átlagos légnyomás:               0,007 bar
Légkör összetétele:
– Szén-dioxid (CO2):               95,32%
– Nitrogén (N2):                         2,7%
– Argon (Ar):                                1,6%
– Oxigén (O2):                            0,13%
– Szén-monoxid (CO):            0,07%
– Vízgőz (H2O):                          0,03%
– Egyéb (Ne, Kr, Xe, O3):       0,0003%

Planetológiai értelemben a Mars a Földünkhöz nagyon hasonló égitest, ennek ellenére vannak eltérések. Ásvány- és kőzettani összetételét tekintve oxigén- és kéntartalma valamivel nagyobb bolygónkénál. Mivel azonban mérete és tömege is kisebb, belső hőforrásai is csekélyebbek voltak. Így a Mars tömegére nagyobb hőleadó felület jutott, mint a Földére, így gyorsabban hűlt.

A gyorsabb hűlés két dolgot eredményezett. Elsőként, a kevesebb hő kisebb mértékű belső differenciálódást eredményezett, így a marsi kéreg és köpeny vastartalma nagyobb a földinél. Továbbá, a gyors kihűlés miatt a bolygó vasmagja megszilárdulni kezdett, így 3,9-3,7 milliárd évvel ezelőtt leállt a globális dinamó és megszűnt a mágneses tér, melyet követően az eredeti marsi légkör túlnyomó része is elszökött (ehhez egy nagyobb becsapódás lökéshulláma is hozzájárult).


A Mars felszíne, magassági színezéssel. (MOLA)

Morfológiai értelemben a Mars két nagy részből áll:  délen andezites felföldek, míg északon, 3-5 km-rel alacsonyabb, bazaltos mélyföldek dominálnak. Utóbbi esetében, a meteoritkráterek viszonylagos hiányából feltételezhető, hogy e területet régen óceán borította. Ezt a kétarcúságot töri meg többek között a Tharsis-hátság nevű vulkanikus plató, valamint a Hellas-medence, mely egy hatalmas becsapódás emlékét őrzi.


A Mars jellegzetes kettőssége.

Számottevő alakzat még az Elysium-hátság, illetve a Valles Marineris, mely a bolygó (és a Naprendszer) legnagyobb tektonikus eredetű alakzata és amely sokban hasonlít a földi Kelet-Afrikai-árokra. A 4000 km hosszú, helyenként 6-8 km mély hasadék minden bizonnyal egy kezdődő, de már a korai fázisban megrekedt lemeztektonika bizonyítéka.


A Valles Marineris. (MOLA)

Nem a Valles Marineris az egyetlen “rekorder” felszíni forma a Marson. A Marson található a Naprendszer legmagasabb vulkánja is, az Olympus Mons. Méreteivel kimagaslik az egyébként is hatalmas marsi tűzhányók közt: az 500 km átmérőjű pajzsvulkán 24 km magasra emelkedik ki. Így a Mars felszínének legmagasabb és legalacsonyabb pontja között 29 km a szintkülönbség.


Az Olympus Mons, a Viking-1…


…illetve a Mars Express felvételén.

Ha össze akarjuk hasonlítani a legmagasabb földi hegyekkel, a Mount Everest-tel és a hawaii Mauna Kea-val (mely vulkán nagyobbik fele egyébként a tengerszint alatt van), akkor azt láthatjuk, hogy a marsi vulkán méreteiben messze felülmúlja földi társait.


Az Olympus Mons magasságának összehasonlítása a két legmagasabb földi hegységgel.

A nagy magasság- és átmérőbeli különbségek több okra vezethetők vissza: a marsi gravitáció a földinek csupán <30%-a, így két, azonos tömegű vulkán a Marson sokkal könnyebb, mint a Földön. A Mars kérge ellenben a földinél vastagabb (20-80 km, szemben a földi 6-40 km-rel), így jóval nehezebb vulkáni kúpokat is képes megtartani. Emellett a marsi tűzhányók mozdulatlan magmafeláramlásokhoz (ún. forró foltokhoz) voltak kötve, szemben a földiekkel, melyek többségében a lemeztektonikához kötődnek.

A makroformák mellett feltétlen említést érdemelnek a kisebb felszíni alakzatok is. Meteoritkrátereket főleg a magasabb déli felföldeken találhatunk, ezek megjelenése azonban eltér a holdi és merkúri kráterektől. Formájuk részben erodálódott a külső erők miatt, egyeseknél geológiai inverzió is jelen van. Ezen kráterek lapos tetejű tornyok lettek, a rajtuk kívüli terület lepusztult, míg a kráter erősebb anyaga megmaradt. Külön említést érdemel a lebenyes kráterek csoportja, melyeknél a becsapódás megolvasztotta a felszín alatti jeget, így hozva létre a kráter körüli jellegzetes “lebenyt”.


Egy “lebenyes” kráter.

Bár a víz már csak nyomokban fordul elő a Marson, rengeteg forma tanúskodik néhai jelenlétéről. Ezek elsősorban fluviális formák, úgy mint áradásos-, illetve hálózatos csatornák, vulkánok lejtőin létrejött folyásnyomok, valamint sárfolyások és lejtősávok. A legnagyobbak ezek közül az áradásos csatornák, melyeket hirtelen lezajlott áradások hoztak létre. Szélességük eléri a 10 km-t, hosszuk meghaladhatja az 1000 km-t is. Ezen csatornák többsége az alacsonyabb északi mélyföldre fut ki.


A 7 km széles és 300 m mély Reull Vallis medre.

A víz által létrehozott formák egy különleges típusát képviselik azok a lekerekített formák, melyek meteoritkrátereknél jöttek létre. Ezek a csepp alakú formák múltbeli vízerózió nyomai, a környezeténél szilárdabb kráter “mögött” megmaradt a víz által egyébként elmosott anyag.


Csepp alakú meteoritkráterek.

Nem mehetünk el a Mars légköre mellett sem szó nélkül, mely százszor ritkább a földinél és túlnyomórészt szén-dioxidból áll. A felszín hőmérsékletét a CO2 által kifejtett üvegház-hatás a számítások szerint körülbelül 5°C-al emeli. A ritka légkör miatt a felszíni légnyomás átlagosan 6,7 mbar, ez körülbelül akkora a marsi felszínen, mint a Földön 40-50 km magasságban. Az alacsony légköri nyomás miatt a sarkokon a CO2 szénsavhó formájában kicsapódik a felszínre, a víz pedig csak speciális formában (0° és 2°C között) lehet folyékony, tartósan nem maradhat meg a felszínen. A ritka levegőben azonban időben változó mennyiségű por lebeg, melynek hatására az égbolt vörösen fénylik (napnyugtakor a Nap körül kékes árnyalatúvá válik), és amely hosszú pirkadatot és szürkületet eredményez.


Egy marsi naplemente.

A ritka légkör csekély munkavégző képessége miatt kevés az eolikus forma. Széleróziós formák közt a porördögök nyomai említhetőek, melyek sötét sávokként jelzik a kisméretű forgószelek haladási útvonalait.


Porördögök nyomai.

Az akkumulációs formák közt a dűnék a legjelentősebbek, amelyek között megkülönböztethetünk barkánokat, hosszanti-, illetve transzverzális dűnéket, és csillag alakú dűnéket is.


Barkánok a Marson.

Erősebb légmozgások csak jet streamek formájában vannak jelen, elsősorban tavasszal, az adott féltekén. A felszínközeli szelek gyengék, az alsó légkörben a szélsebességek 10m/s-nál gyengébbek, kivételt képeznek a porviharok, melyek globálisak is lehetnek. A lokális kialakulású, de globális kiterjedésű porviharokat az ún. porfűtés mechanizmusa hozza létre: a felszín felmelegedésével és kis lokális porviharok kialakulásával még több por kerül a levegőbe, melyet még jobban fűt a beérkező napsugárzás, így egy öngerjesztő folyamat indul be. Ilyenkor távcsövön át szemlélve az egyébként részletgazdag vörös bolygó teljesen homogénné válik.


Porvihar a Marson.

Végül, de nem utolsó sorban, bár jelen ismereteink szerint a Marson nincs élet, az elmúlt időkben sok hír látott napvilágot e témával kapcsolatban. Június elején kelt szárnyra az a hír, miszerint évszakos ingadozású metánt, illetve szerves vegyületeket találtak; illetve a közelmúltban bejelentették, hogy folyékony vízre bukkantak a vörös bolygón. Ezek függvényében kijelenthetjük, hogy bár a nagy mennyiségű folyékony víz elszökése óta vélhetően nincs magasan szerveződött élet a Marson, kezdetleges életformákkal való találkozásra  azonban még van esélyünk.

Szerző: Kovács Gergő

Felhasznált/ajánlott irodalom:
NASA Solar Views
Kereszturi Ákos: Mars – fehér könyv a vörös bolygóról
Kereszturi Ákos: Hogyan mutassuk be a Marsot? (Meteor, 2018/7-8, 12-15.o.)
Sik András: SUPERNOVA a Marson
Hargitai Henrik: A Mars felfedezése

Könyvajánló: Arthur C. Clarke – A Mars titka

Az emberiség végre kinőtte bölcsőjét, a Földet és létrehozott egy állandó települést a Marson. A történetben a híres sci-fi író, Martin Gibson az Ares nevű személyszállító űrhajó első (teszt)útján a Marsra utazik, hogy beszámolókat írjon az ottani Mars-kolónia életéről és mindennapjairól. A három hónapos út során megismerkedik a legénység tagjaival és szorgalmasan írja az űrutazásról szóló cikkeit. Közben megismerkedünk az űrpor “hatásaival”, majd megérkezve magával a vörös bolygóval és holdjaival is. Betekintést nyerünk továbbá az első Mars-telepesek életébe, de észre vesszük azt is, hogy a bolygó titkokat is rejteget…

A mű a szerző egyik korai, 1951-es könyve, mely kis csúsztatásokkal, de ma is megállja a helyét a sci-fi könyvek közt.

Arthur C. Clarke: A Mars titka.
Budapest, 1957. Bibliotheca Kiadó.
Fordította: Pethő Tibor.
Lektor: Zerinváry Szilárd. 219 p.

Értékelés: 8/10

Szerző: Kovács Gergő

Randevú az ’Oumuamua-val

2017. október 19-e felvillanyozta a csillagászokat, egy olyan égitestet találtunk, melyet ez idáig még soha. A Hawaii-szigeteken lévő Haleakala Obszervatórium Pan-STARRS1 1,8 méter átmérőjű távcsövével fedezték fel az ideiglenesen C/2017 U1 (PANSTARRS) névre keresztelt égitestet, mely ekkor már túl volt perihéliumán és egyre távolodott a Földtől. Az igazán különös benne a pályája és a sebessége volt, melyek egyértelműen bizonyították, hogy az égitest a Naprendszerünkön kívülről, a csillagközi térből érkezett. Bár minden bizonnyal számtalan ilyen objektum „tör be” Naprendszerünkbe, még nem volt lehetőségünk arra, hogy megfigyelhessünk egy ilyen csillagközi vándort. Mostanáig.

Az ’Oumuamua pályája (NASA/JPL és iVirtualtelescope.net)

Az égitest pályája erősen elnyúlt (excentricitása egészen pontosan 1,1994), olyannyira hogy ellentétben a naprendszerbeli égitestekkel, ez az égitest hiperbolapályán mozog. Ez az egyik bizonyítéka annak, hogy az ’Oumuamua kívülről érkezett, a másik pedig a sebessége, mely a csillagközi térben, a Naphoz képest 26,4 km/s volt; a 2017. szeptember 9-ei perihéliumakor pedig egészen 87,3 km/s-ra gyorsult.

Az ’Oumuamua pályája összehasonlítva egy üstökös pályájával. (Brooks Bays / SOEST Publication Services / UH Institute for Astronomy)

Az égitestet nem sokkal felfedezése után, üstökös-aktivitás híján C/2017 U1-ről A/2017 U1-re nevezték át (C=comet, A=asteroid), majd később az A-ból I, mint „Interstellar” lett, valamint egy nevet is kapott, így lett a neve 1I/2017 U1 (’Oumuamua). A furcsa név a hawaii bennszülött nyelven „messziről elsőként érkezett hírnök”-öt jelent, ennél a névnél már csak a Ráma lett volna találóbb. Egyes, meg nem erősített “pletykák” szerint eredetileg Rama-nak akarták volna az égitestet elnevezni, a győztes azonban az ‘Oumuamua lett. Akik olvasták Arthur C. Clarke: Randevú a Rámával c. nagyszerű sci-fijét, azok tudják: a regény és a valóság között zavarba ejtő hasonlóságok vannak…

Apropó! Ez idáig egyetlen olyan formájú égitesttel sem találkoztunk, mint az ’Oumuamua. Meglehetősen fura objektumról van szó: kb. 400 méter hosszú és csak kb. 40 (!) méter széles. A tengelye körül (ami kb. félúton van a hossztengelyen, arra merőlegesen) kb. 7,3 óra alatt fordul meg. Emiatt, valamint hosszúkás, szivar-szerű alakja miatt fényessége rendkívül gyorsan változik, 7,3 óra alatt a tízszeresére nő, vagy épp a tizedrészére csökken. Színe, vélhetően a kozmikus sugárzás miatt mélyvörös, mások szerint ez szén jelenlétére utal. Emellett nagyon sötét anyagból áll, a látható fény 96%-át elnyeli, anyaga pedig vélhetően rendkívül sűrű, valószínűleg fémből és/vagy kőből áll.

Fantáziarajz az ’Oumuamua-ról (ESO / M. Kornmesser)

Természetesen ez a bizarr, szivar-szerű forma és a Naprendszeren kívüli eredet sokak fantáziáját megmozgatta. Voltak, akik azt gondolták, hogy az ’Oumuamua furcsa alakja nem természetes eredetű, hanem tudatosan az űrutazáshoz lett megtervezve: ha csillagközi utazásokra építenénk egy űrhajót, a formája valószínűleg pont ilyen lenne. Elnyúlt formája és a „menetirány” felé néző részének kis felülete minimalizálja az űrbéli por és gázok keltette súrlódást. Ezt gondolták a Breakthrough Listen (Áttörő Lehallgatás) kutatói is, akik a Green Bank-i rádióteleszkóppal „lehallgatták” az ’Oumuamua-t, azonban 10 órányi megfigyelés sem hozott eredményt. Ennek fényében (jó eséllyel, bár nem száz százalékosan) ki lehet jelenteni, hogy az ’Oumuamua „csak” egy csillagközi aszteroida.

De mégis, hogyan lehet ilyen bizarr alakja? Egy nemrég publikált tanulmány, melyet az ELTE Gothard Asztrofizikai Obszervatórium és a MTA-BME Morfodinamikai Kutatócsoportja kutatói végeztek, arra jutott, hogy az égitest szokatlan alakját természetes kopás is képes lehet létrehozni. A kisbolygók alakját több minden befolyásolhatja, ilyenek az ütközés okozta darabolódás vagy a mikrometeoritok okozta kopás. Azonban az sem mindegy, hogy az adott kisbolygó egy darabból álló, ún. monolitikus égitest, vagy sok darabból álló „kőrakás”? Ha kőrakás-típusú az égitest, akkor kvázi gömb-alakot vesz fel az erodálódás során, ha azonban egyetlen tömbből álló monolit, akkor azon először nagy síklapok jönnek létre, majd az égitest fokozatosan elvékonyodik. Az ’Oumuamua, alakja miatt jó eséllyel egy monolitikus aszteroida, mely, mivel nagyon hosszú ideig bolyongott a csillagközi térben, távol a nagyobb égitestektől, eljuthatott a mikrometeoritok okozta kopás végállapotába.

Egy lehetséges magyarázat az ’Oumuamua alakjának létrejöttére (Domokos és mtsai, 2017)

Mi lesz a további sorsa ennek a furcsa jövevénynek? Miközben e sorokat olvassuk, az ’Oumuamua már kifelé halad a Naprendszerből, körülbelül 38 km/s-os sebességgel. Érdekesség, hogy az ’Oumuamua gyorsabb, mint bármelyik ember alkotta űrszonda, beleértve a Pioneer- és Voyager-űrszondákat vagy a New Horizons-t. Ilyen sebességgel a Jupiter pályáját idén májusban, a Szaturnuszét jövő év januárban, a Neptunuszét pedig 2022-ben fogja keresztezni. Ezt követően pedig örökre elhagyja Naprendszerünket.

Szerző: Kovács Gergő

Kapcsolódó cikkek:
‘Oumuamua: Megvan a forrás?
Könyvajánló: Arthur C. Clarke – Randevú a Rámával

 

Források:

https://solarsystem.nasa.gov/planets/oumuamua/indepth

https://www.sciencealert.com/interstellar-extrasolar-asteroid-weirder-than-we-knew-oumuamua

https://www.nasa.gov/planetarydefense/faq/interstellar

https://www.eso.org/public/archives/releases/sciencepapers/eso1737/eso1737a.pdf

https://www.nasa.gov/feature/solar-system-s-first-interstellar-visitor-dazzles-scientists

https://www.space.com/39100-interstellar-object-oumuamua-alien-life-search.html

https://www.csillagaszat.hu/hirek/gyorshir-felfedeztek-az-elso-csillagkozi-kisbolygot/

https://www.csillagaszat.hu/hirek/ilyet-meg-soha-nem-lattunk-ujabb-informaciok-az-elso-csillagkozi-kisbolygorol/

https://qubit.hu/2017/11/21/eloszor-jutott-a-fold-kozelebe-egy-masik-csillagrendszerbol-szarmazo-aszteroida

https://www.csillagaszat.hu/hirek/nr-egyeb-naprendszer/apro-objektumok/nr-apro-kisbolygok/magyar-kutatok-szerint-termeszetes-folyamatok-is-kialakithattak-a-csillagkozi-kisbolygo-alakjat/

http://www.letya.hu/2014/02/arthur-c-clarke-randevu-ramaval/

http://www.appy-geek.com/Web/ArticleWeb.aspx?regionid=3&articleid=123447159

https://breakthroughinitiatives.org/news/14