A Naprendszer

Szerző: Csaba György Gábor

Naprendszerünk, mint közismert, Földünk legszűkebb kozmikus környezete. Kiterjedését nem könnyű meghatározni, hiszen nincsenek a térben kitűzött határai. Jobb híján azt mondhatjuk: a Naprendszer addig terjed ki, ameddig a Nap gravitációja erősebb a környező csillagokénál („dinamikai Naprendszer”). Minthogy viszont a csillagok meglehetősen rendszertelenül oszlanak el körülöttünk, az így meghatározott Naprendszer alakja amőba-szerű, távolról sem gömbszimmetrikus lenne. Átlagban a Naptól mintegy 2,5 – 3 fényév (nem egészen 1 parsec) távolságig tart; talán kényelmesebb egy ekkora sugarú gömbbel modellezni.

Naprendszerünk legbelső részében található a bolygórendszer. Ehhez tartozik központi égitestünk, az egészet gravitációs erejével összetartó Nap; továbbá a nagybolygók, a törpebolygók, a kisbolygók, üstökösök, valamint az interplanetáris anyag, amely porból és ritka gázból áll. Az egészet „átfújja” a napszél, és át-meg áthatják különféle erőterek (interstelláris mágneses tér, elektromágneses sugárzások stb.).

A nagybolygók olyan égitestek, amelyek csillag (esetünkben a Nap) körül keringenek, elég erős a gravitációjuk ahhoz, hogy gömb alakúak legyenek, és pályájuk mentén „kisöpörték” az apróbb égitesteket. Lényegében egy közös síkban keringenek a Nap körül, e síktól csak néhány foknyit térnek el. A törpebolygók is gömb alakúak, de pályájuk mentén nem söpörték tisztára a teret. Nem feltétlenül tartják magukat a Naprendszer szimmetriasíkjához közel. A kisbolygók már ahhoz is kicsik, hogy gömb alakjuk legyen; pályájuk inklinációja lényegében tetszőleges lehet.

A Naprendszer külső tartománya és a bolygórendszer közt a Kuiper-öv helyezkedik el. Ehhez sok kis- és törpebolygó tartozik, melyek meglehetősen ritkán és szabálytalanul oszlanak el. Legkívül az Oort-felhő van, a Naptól 1 – 2 fényévnyire; ezt sok, millió vagy inkább milliárd apró, néhány km méretű üstökösmag alkotja. Őket a Földről nem lehet észlelni; de ha valamiért, valószínűleg a közeli csillagok gravitációs zavaró hatása miatt, egyik-másik beesik a Naprendszer belső terébe, és közel jut a Naphoz, akkor a Nap sugárzása miatt anyaga egy része szublimál, s az üstökösmag körül „kómát” alkot. Ennek anyagát a napszél elfújja, így alakul ki az üstökös „csóvá”-ja. Ez, illetve a rajta szóródó napfény szabad szemmel is láthatóvá válhat. A kis égitest, pályáján tovább haladva, idővel persze újra elhalványul (bár a csillagászok sokáig követni tudják műszereikkel), majd eltűnik: távozik Naprendszerünkből.

Ha egy üstökös pályáját valamelyik óriásbolygó gravitációs hatása úgy módosítja, hogy közel ellipszis alakúvá lesz, akkor ez az üstökös nem repül ki a Naprendszerből, hanem többször is körbejárja a Napot. Minden alkalommal párolog, míg minden illó anyaga elfogy, s csak egy kőhalmaz marad belőle. Ez persze tovább kering, de immár sok apró darabja egymástól független pályán. Idővel szétszóródnak a pálya mentén: létrejött egy meteorraj.

A rendszer közepén levő Nap egy „élete” delén járó sárga törpecsillag. Tömege kb. 2·1030 kg, ami az egész Naprendszer össztömegének kb. 99,8%-a. Körülötte – pontosabban: vele közös tömegközéppontjuk körül – keringenek a bolygók, stb.

A bolygórendszert külső és belső bolygókra oszthatjuk, de ez csak egy mesterséges felosztás. Eszerint belső bolygó a Merkúr és a Vénusz, mivel ezek vannak közelebb a Naphoz, mint a Föld. A többi nagybolygó, a Marssal kezdve, a külső bolygók. Lényeges fizikai tulajdonságaik alapján viszont föld-típusú, illetve óriás– (vagy gáz-) bolygókat különböztetünk meg. A Föld-típusúak a Merkúr, Vénusz, Föld és a Mars. Ezek kicsik, átlagos sűrűségük nagy (3,93 és 5,51 g/cm3 közt), légkörük nincs vagy vékony, holdjuk nincs vagy kevés (a Földnek 1 holdja van, a Marsnak 2 egészen kicsiny és szabálytalan alakú). Ellenben az óriásbolygók, a Jupiter, Szaturnusz, Uránusz és a Neptunusz hozzávetőlegesen egy nagyságrenddel nagyobbak, mint a föld-típusúak, légkörük vastag és sűrű; átlagsűrűségük kicsi (0,69 és 1,64 g/cm3 közé esik), sok holdjuk és gyűrűrendszerük van. A két bolygótípust egy kisbolygó-övezet is elválasztja egymástól: sok kisbolygó kering a Mars és a Jupiter pályája közt.

Ha a rendszer méretarányait akarjuk elképzelni, tekintsük át 100 milliószoros kicsinyítésben. Ekkor a Föld kb. 13 cm átmérőjű, majdnem pontosan gömb alakú labda; rajta 0,08 mm magas, pici ránc a Himalája. Ha rálehelünk a golyóra, s lesz rajta egy vékony pára-réteg: ez vastagabb, mint az óceánok.

A Föld-labdától kb. 4 méterre kering egy dió: a Hold. A Nap 1,5 km-re van, 14 m átmérőjű forró, fényes gömb. A Kuiper-öv a Naptól mintegy 60 km-e kezdődik. A legközelebbi állócsillagok, a Nap „testvérei” ebben a modellben legalább 400 ezer km-re lennének, tehát még a valódi Holdnál is messzebb. (E 400 ezer km-ből már megtette az ember az első 4 métert, a Holdig. Ezt nevezik néha úgy, talán némileg nagyképűen: a világűr meghódítása…)

A Voyager-szondák már elhagyták a bolygórendszert, s most a Naprendszer külső tere felé haladnak. Még sok évezredbe telik, amíg áthaladva az Oort-felhőn, kijutnak Naprendszerünkből a csillagközi térbe. Igaz, gyakran olvasunk olyan hírt, amely szerint e szondák már „hivatalosan” is elhagyták a Naprendszert. Ezekben a hírekben a Naprendszer határát a heliopauzával, a nap által létrehozott „plazmabuborék” határával veszik azonosnak. Ez valahol 18 milliárd km-nél van, modellünkben tehát a Naptól kb. 180 kilométerre. Kétségkívül van különbség a heliopauzán kívüli és belüli plazma fizikai adatai közt, ezért a határt így is lehet definiálni. Ekkor a Naprendszert sokkal kisebbnek tekintjük, mint a „dinamikai” definíció szerint, és ami elég furcsa lenne: ekkor az Oort-felhő már – messze a „határon túl” lévén – nem tartoznék rendszerünkhöz.

Vulcan, a sosemvolt bolygó

Szerző: Kovács Gergő

1840-et írunk. A francia matematikus, Urbain Jean Joseph Le Verrier a Merkúr pályáját tanulmányozta. Munkáiban a planéta mozgását a newtoni fizika eszközeivel akarta előrejelezni, azonban a bolygó előre kiszámított pályája és az égitest tényleges mozgása között – a legpontosabb számítások ellenére – folyamatosan maradtak különbségek. Ezt az eltérést a matematikus egy eddig felfedezetlen, a Nap és a Merkúr közt keringő bolygónak tulajdonította. Az égitestet Vulcannak/Vulcanusnak nevezte el, a tűzhányók, kovácsolás és sivatagok római istene után.

Urbain Jean Joseph Le Verrier (1811-1877)

Le Verrier tézisét az is alátámasztotta, hogy a pályaháborgásokat figyelembe véve már sikerült felfedeznie egy bolygót, a Neptunuszt, 1846-ban. Az égitestre az Uránusz pályájában keletkező zavarok vizsgálata során bukkant rá, a Neptunusz pedig ott volt, az égbolt azon szegletében, ahol azt Le Verrier előre kiszámította. A sors iróniája, hogy az angol John Couch Adams számításai is helyesek voltak a Neptunusz térbeli helyzetét illetően, azonban Sir George Airy, angol királyi csillagász és a Cambridge-i obszervatórium vezetője, James Challis “mulasztásai” által a Neptunusz felfedezése Le Verrier és a berlini csillagda igazgatója, Johann Gottfried Galle érdeme lett.

Le Verrier riadóztatta a csillagász “társadalmat”, melynek köszönhetően a Vulcan a nemzetközi bolygóvadászat fő célpontja lett. Egyesek, például Edmond Modeste Lescarbault, saját készítésű teleszkópjával látni vélte a bolygót, mint a Nap korongja előtt gyorsan elhaladó apró pontot. A szkeptikus hangok és a bizonytalan megfigyelések ellenére Le Verrier elmélete masszívan tartotta magát, még az 1877-ben bekövetkező halála után is. Sőt, egy 1878-ban bekövetkezett napfogyatkozás kiváló alkalmat kínált (volna) a Vulcan megfigyelésére. Neves csillagászok vélték látni a bolygót, a nagy hírverés után, miszerint felfedezték a bolygót, kiderült, hogy csillagok voltak csupán…

A Vulcan-t még mindig nem látta senki, továbbá a Merkúr különös, gravitációs módon zavart (ún. perturbált) mozgásának oka továbbra is ismeretlen maradt. Ennek ellenére rengeteg tudós, köztük hazai csillagászok is, felfokozott érdeklődést tanúsítottak a bolygó iránt:


Kassai Raisz Miksa: A vulkán bolygó

Több év óta a naprendszerhez tartozó bolygók abszolút mozgása mathematikai törvényeinek kiszámításával foglalkozván, számításaimnak egyik eredménye azon következtetésre vezetett, hogy a Nap és Merkur közt még egy bolygónak – a több csillagásztól is feltételezett – Vulkán bolygónak kell léteznie. Erre nézve számításom eredménye a következő:

A VULKÁN bolygó átmérője (tengelye) = 724.9752 km.; útja pályájában egy nap alatt 5,502,355 km.; egy óra alatt 229,264 km.; tropikus mozgása egy nap alatt 98,059.16 km.; a Naptól való távolsága 11,436,932 km. Évi periodikus mozgását 13.21651 nap alatt végzi.

Természettudományi Közlöny XCIII. kötet, 202-ik füzet

1886 június


A Vulcan keresése még több évtizedig folytatódott, de tényleges felfedezés soha nem született, hisz’ soha nem is létezett ez a planéta. Majd 1915-ben bombaként robbant a tudományos világba Einstein relativitáselmélete, mely tökéletesen megmagyarázott mindent, így a Vulcan nemlétét is: az einsteini fizika szerint a Nap óriási tömege miatt képes “meggörbíteni a teret és időt”, a Merkúr pedig olyan közel kering központi csillagunkhoz, hogy már ebben az eltorzult téridőben kering. Az einsteini fizika így magyarázatot adott a Merkúr különös mozgására, többek között a bolygó perihéliumvándorlására is. Ezt a jelenséget, vagyis az égitest napközelpontjának folyamatos mozgását a klasszikus, newtoni fizika csupán egy másik égitest zavaró hatásával tudta megmagyarázni.

A Merkúr perihéliumvándorlása

Ahogy Isaac Asimov mondta, a Vulcan örökre le lett radírozva az égboltról. A csillagászok nyilvántartásaiból ki-, a térképekről lekerült. A korábban történt bolygóészlelések pedig minden bizonnyal napfoltok vagy csillagok voltak. A Vulcan története pedig arra tanította az embert, hogy a természet törvényei bonyolultabbak, mint hinné.

Források: [1] [2] [3] [4]

A Merkúr átvonulása a Nap előtt

Szerző: Rezsabek Nándor

A Merkúr-átvonulás főbb adatai és időpontjai (A helyi időhöz az UT-ben megadott időpontokhoz egy órát hozzá kell adni) Forrás: EclipseWise.com

November 11-én az idei esztendő legfontosabb csillagászati eseményére vagyunk „hivatalosak”: a Merkúr bolygó átvonul csillagunk, a Nap előtt. Reméljük, Olvasóink kedvező időjárási körülmények között, derült időben lehetnek részesei a természeti jelenségnek. A megfigyelés kapcsán fontos megjegyezni, hogy az kizárólag biztonságos napszűrővel ellátott csillagászati távcsőbe pillantva lehetséges. Erre az ország számos pontján, csillagvizsgálókban, továbbá csillagászati szervezetek által tartott távcsöves bemutatókon lesz lehetőség. A megfigyelők a Nap korongja előtt elvonuló foltként láthatják a belső bolygó fekete sziluettjét.

A Merkúr átvonulása a Nap előtt, 2016. május 9-én (Fotó: Elijah Mathews) 

Csillagászattörténeti kutatások szerint minden idők egyik legnagyobb hatású asztronómusa, a heliocentrikus világkép megalkotója, Kopernikusz sohasem látta a Merkúr bolygót. Nemhogy távcsővel – hiszen azt csak évtizedekkel később alkották meg, majd használták csillagászati célokra –, de szabad szemmel sem. A dolog magyarázata, hogy a Merkúr kizárólag napnyugta után és napkelte előtt látható, de központi égitestünkhöz valóközelsége miatt igencsak rövid ideig. Fényessége pedig jóval elmarad a népnyelvben Esthajnalcsillagnak nevezett, a Szentírásban egyedüliként konkrétan említett bolygótól, a Vénusztól. Így megtalálása nem is olyan könnyű feladat, megpillantása minden esetben kizárólag a horizonthoz közel lehetséges.

A Merkúr és a Vénusz legnagyobb kitérései (Kép: history.nasa.gov)

Szabad szemmel fényes csillagnak tűnik; csillagászati távcsővel vizsgálva kisméretű korongja a Holdhoz, valamint a Vénuszhoz és a Marshoz hasonlóan fázisokat mutat. Naprendszerünk központi csillagához legközelebb rója köreit, emiatt napsütötte oldalán közel félezer fokos pokol uralkodik, árnyékos felén pedig majdnem mínusz kétszáz fok a hőmérséklet. Tengely körüli forgása igen lassú, három fordulata alatt kétszer is megkerüli a Napot. Így ottani időszámítás szerint egy Merkúr-esztendő mindösszesen másfél Merkúr-napig tart. Ha léteznének értelmes élőlények a felszínén – valójában primitív organizmusok sincsenek arrafelé –, másfél naponta ünnepelnék születésnapjukat. A bolygó külső megjelenésében megtévesztésig hasonlatos a Föld Holdjához. Ugyanúgy kozmikus sebhelyek borítják felszínét, melyeket a Naprendszer életének korai szakaszában bekövetkezett intenzív kisbolygó- és meteoritbecsapódások okoztak. Ezek közül a Caloris-medencét kialakító olyan pusztító volt, hogy az 1300 km átmérőjű óriáskráter mellett a szilárd bolygófelszínen végigfutó hullámok az égitest átellenes pontjában találkozva kaotikus felszíni formákat hoztak létre.

A Merkúr a MESSENGER űrszonda felvételén

S’ bármily furcsán hangzik, a Merkúrnak van magyar vonatkozása! Felszínén ugyanis Bartókról, Jókairól, Lisztről, valamint (utolsóként 2013-ban, a MESSENGER űrszonda felvételeire alapozva, a keresztelésre hivatott Nemzetközi Csillagászati Unió jóvoltából) Petőfiről neveztek el egy-egy krátert.

Szondák a Merkúr és Vénusz vonzásában – I. rész

Naprendszerünkben a bolygónk és csillagunk közti közel 150 000 000 km-es távolságot két bolygószomszédunk: a Merkúr és a Vénusz pályája is keresztezi. Mindketten a Naprendszerünk belső bolygói, bolygószomszédaink, tanulmányozásuk (leginkább a Merkúr esetében) mégis inkább nagyrészt csak távcsöveinken keresztül zajlik. Az okok, amelyek miatt e két bolygó kutatása háttérbe szorult a Mars, vagy még inkább a Hold kutatásával szemben: egyrészt a Nap körüli pályájuk elérésének technikai nehézségei (főként megint csak a Merkúr esetében), valamint a bolygón uralkodó szélsőséges körülmények (főként a Vénusz esetében). Mindkét ok eddig nehézséget állított a kutatók és mérnökök elé, ám remélhetőleg a technikai fejlődés, a 21. század új ötvözetei és technológiái, – valamint természetesen a szándék – megnyitják az utat a jobb megismerhetőségük felé. A múlt, a jelen és a jövő űreszközeit vesszük most sorra, melyek (egyik rész-) feladata e két bolygó kutatása.

A Merkúr és a Vénusz. (Wikipédia)

Az űrszondák

E téma taglalásánál nem mehetünk el a fogalom megtárgyalása mellett: az űrszondák olyan személyzet nélküli űreszközök, melyek célja hogy (eddig főleg Naprendszerünkben található) bolygók/holdak felszínét, összetételét, légkörét, jelenségeit, stb. valamilyen formában vizsgálják.

Típusaikat/funkciójukat tekintve lehetnek:

  • elrepülő egységek (flybyerek): elrepülő egységnek, elrepülés jellegű küldetésűnek azt az űrszondát nevezzük, mely lassítás és orbitális pályára állás nélkül halad el egy-egy égitest mellett, annak relatív közelségében, miközben műszereivel adatot gyűjt róla. Egy-egy csillag, bolygó vagy hold ilyen módon történő megfigyelése általában csak részfeladat a szonda útja során. Az elhaladás általában nem kizárólag tudományos célú: az irányítás azért tervezi a szonda pályáját közel egy-egy bolygóhoz, hogy annak tömegvonzását kihasználva ún. gravitációs hintamanővert hajtson végre, mely során az űreszköz sebességet nyer és irányt is változtat. Egy-egy ilyen művelet alkalmazásával kevésbé energiaigényes pályán juthatunk el távolabbi égitestekhez is, így az elrepülés célja elsődlegesen a hintamanőver, és másodlagosan a tudományos adatgyűjtés és megfigyelés. Erre példa az 1973-ban indított Pioneer-11 bolygóközi űrszonda, mely a Jupiter körüli hintamanőverrel jutott el a Szaturnusz közelébe. Végső célja, hogy a Sas csillagkép irányába haladva, 4 millió év múlva megközelítse a legközelebbi csillagokat.

A Pioneer-11. (NASA)

  • keringő egységek (orbiterek): a keringő egységek orbitális pályára állva térképezik fel a bolygót vagy épp kommunikációs átjátszóegységként funkcionálnak a földi irányítás, és a bolygón lévő landoló egységek között. Hordozhatnak kamerát, amely a látható és infravörös/röntgen/stb tartományban készít képeket; spektrométert, az atmoszféra jellemzőinek vizsgálatához; radiométert, a hőmérséklet vizsgálatához; magnetométert, a mágneses tér vizsgálatához; pordetektort, a mikrometeorokat és a bolygóközi térben lévő porrészecskéket vizsgálatához; radart, a domborzat vizsgálatához; sugárzásmérőt, a bolygó által kibocsátott sugárzás vizsgálatához; részecskecsapdát; neutrondetektort, stb. Erre példa a Hold körül keringő LRO (Lunar Reconnaissance Orbiter), mely 2009 óta gyűjti az adatokat elsősorban a későbbi holdexpedíciók számára (potenciális leszállóhelyek keresése és feltérképezése, a Holdon található, emberes holdexpedíciók esetén felhasználható erőforrások keresése és feltérképezése, a holdi sugárzási környezet vizsgálata)

A Lunar Reconnaisance Obriter. (NASA)

  • becsapódó egységek (impaktorok/penetrátorok) és légköri szondák: a becsapódó egységek az égitest felszínére irányítva, azt fékezés nélkül közelítik meg. Műszereik az utolsó másodpercig dolgoznak, és folyamatosan adatokat küldenek az irányítóközpont felé. A történelem első impaktora a 1959 szeptemberében felbocsátott szovjet Luna-2 volt. Tervezett feladata a Hold megközelítése/eltalálása, a kozmikus sugárzás, a napszél, a mikrometeoritok, az interplanetáris anyag és a Hold mágneses terének vizsgálata volt. Becsapódását akkoriban a MTA Csillagvizsgáló Intézetében, valamint a Bajai Obszervatóriumban is detektálták.
    A légköri szondák a becsapódó egységek azon fajtái, melyek légkörrel rendelkező bolygók, gázóriások atmoszférájába érve gyűjtenek adatot annak összetételéről, végül a felszínbe csapódva, vagy a elégve/nyomás által összeroppantva fejezik be pályafutásukat. Erre példa a Galileo légköri szonda (Galileo probe), mely az azonos nevű Galileo szondáról leválva lépett be a Jupiter légkörébe és a 150 km-es ereszkedése során 58 percnyi adatot gyűjtött a helyi időjárásról, majd túlhevült a légkörben és elégett.

A Galileo űrszonda. (NASA)

  • leszálló egységek (landerek): a leszálló egységek olyan űrszondák, melyek az égitest felszínén hajtóművük/hőpajzsuk/ejtőernyőik/légzsákjaik révén „puha” landolást valósítanak meg. Landolásuk után földtani, meteorológiai, szeizmológiai, fotometriai, stb méréseket tudnak végezni, valamint lehetőség szerint képesek talajminta Földre való visszajuttatására is. Remek példa erre az amerikai Viking-1 űrszonda, mely 1976-ban landolt a Mars felszínén.

Távolabbi desztinációk esetén a kutatást végző űrügynökség úgy tervezheti meg az űrszondát, hogy az tartalmaz egy keringő és egy leszálló egységet is, az égitest felszíni és orbitális pályán való egyidejű, költséghatékonyabb tanulmányozása érdekében.

A Viking-1. (NASA)

  • felszíni mozgó egységek (roverek): a roverek mozgásra képes leszálló egységek. Leszállásuk után a földi irányítóközpont vezérli őket, utasítások folyamatos küldésével, általában az égitest körül keringő szondák, műholdak adattovábbítási funkciói segítségével. Az eddigi legsikeresebb rover az Opportunity, mely 2012-ben landolt a Mars felszínén. Jelenleg már több mint 5200 marsi napja végez tudományos méréseket, eközben már megtette a 45. kilométerét.

Az Opportunity űrszonda a Marson. (NASA)

A Merkúr

A Merkúr a Messenger felvételén. (NASA/APOD)

Naprendszerünk legkisebb és legbelső bolygója a Merkúr. Saját holdja nincs. Mérete a Földnek 38%-a (egyenlítői átmérőiket összevetve), a Holdnak 140%-a. Tömege a Földének 5,5%-a, így a Naprendszer 2. legsűrűbb bolygója. Tengely körüli forgásideje 58,6 földi nap, Nap körüli forgásideje 87,9 földi nap. A Merkúr Föld típusú, vagyis kőzetbolygó, sok tekintetben hasonlít Holdunkhoz.

A bolygó vékony atmoszférával rendelkezik, mely főként hidrogénből, héliumból, oxigénből, nátriumból, káliumból és kalciumból áll. Keletkezésüket tekintve a származhatnak a Merkúr kérgében lévő anyagok radioaktív bomlásából, valamint napszélből.

Nap körüli orbitális pályája elliptikus, inkább egy tojásformához, mint körhöz hasonlatos (aphélium: 69 817 079 km, perihélium: 46 001 272 km), tengelyferdesége 2,11° Felszínét, a Holdhoz hasonlóan kráterek, medencék, síkságok tarkítják. A bolygó fémes magja a teljes térfogatának 42%-át teszi ki (szemben a Föld 17%-ával), amely miatt jelentős mágneses tere van.

A Merkúr kutatói

A Merkúrt már az i.e. 14. században is ismerték, első ismert feljegyzései asszír csillagászoktól maradtak ránk. A rómaiaktól maradt ránk a Merkúr elnevezés. Első távcsöves megfigyelése Galilei nevéhez fűződik.

A 20. században elindult „űrkorszak” új időszámítást jelentett a kutatásban is, mivel már nem csak távcsöveinken keresztül, hanem űrszondákkal is vizsgálhatjuk a Merkúrt. Ennek ellenére a bolygó eddig kevésbé került a kutatók célkeresztjébe, mivel szondás kutatása nehézség elé állítja a mérnök-szakembereket. A fő probléma, hogy minél közelebb keringünk a Nap körül, annál gyorsabb sebességre kell felgyorsulnunk. Míg a Föld másodpercenként max. 30,28 km-t tesz meg a Nap körül (365 nap alatt kerüli meg), ez az érték a Merkúr esetében majdnem a duplája, 58,98 km/s (88 nap alatt). A bolygót elérni kívánó szondának el kell érnie ugyanezt a sebességet, de egyúttal az orbitális pálya belépési pontjának közelében lassítania is kell annyira, hogy ténylegesen keringési pályára állhasson. Jelenleg több üzemanyag szükséges a Merkúr eléréséhez, mint a Naprendszer elhagyásához.

  • Mariner-10: Az 1973. november 3-án indított Mariner-10 űrszonda elsődleges feladata a Vénusz és a Merkúr atmoszférikus és felszíni vizsgálata volt. Műszerparkja magnetométerből, UV sugárzásmérőből, UV spektrométerből, kamerákból, töltött részecske teleszkópból, IR sugárzásmérőből és egy plazmadetektorból állt. Mivel a Merkúr megközelítése a fent tárgyalt problémába ütközik, a Mariner fejlesztőmérnökei úgy döntöttek, hogy egy, a Vénusz körül végrehajtott hintamanőverrel juttatják majd el a szondát a Merkúr közelébe, egy olyan Nap körüli pályára, mely során a szonda kis pályakorrekcióval minden egyes keringése során találkozik majd a bolygóval (a Merkúr épp két Nap körüli fordulatot tesz meg eközben). Az első elrepülésre 1974. március 29-én került sor, ez volt a történelemben az első alkalom a planéta ilyen közeli tanulmányozására. A Mariner-10 észlelte a Merkúr mágneses mezőit, valamint több mint 600 fotót készített. A következő két elrepülésre 1974. szeptember 21-én, és 1975. március 16-án került sor. Mivel mindhárom alkalommal a bolygó ugyanabban a Nap körüli helyzetben volt, a Mariner-10 csak a Merkúr 45%-át tudta feltérképezni. 8 nappal az utolsó elrepülés után a szonda manőverezésre használt nitrogén hajtóanyaga elfogyott, a mérnökök a rádióadójának lekapcsolása mellett döntöttek. A Mariner-10 valószínűleg jelenleg is Nap körüli pályán halad, bár berendezéseit a napsugárzás már jelentősen károsíthatta.

A Mariner-10. (NASA)

  • MESSENGER: A 2004. augusztus 3-án indított űrszonda neve (melynek jelentése: hírnök, futár – ahogy a Merkúr bolygó névadója is a római Mercurius, az istenek szárnyas csizmájú hírnöke) egy mozaikszó: MErcury: Surface, Space ENvironment, GEochemistry, and Ranging – azaz Merkúr: Felszín, Űrbeli környezet, Geokémia és Felderítés. Ezen űreszköz lett a bolygó első állandó keringő kísérője, mikor 2011. március 18-án a Merkúr körül pályára állt. Előtte olyan Nap körüli pályán mozgott, mely során kétszer elrepült a Vénusz, és háromszor a Merkúr körül, majd a negyedik közelítés során állt végleg pályára a bolygó körül. Műszerparkja képalkotó berendezésekből, gamma sugárzás és neutron spektrométerből, magnetométerből, lézeres magasságmérőből, atmoszféra és felszínösszetétel vizsgáló spektrométerből, töltött részecske és plazma spektrométerből és röntgen spektrométerből áll. Az első három elrepülés során befejezte a Mariner-10 munkáját és lefotózta a bolygó 95%-át, mérte a mágneses mezőt, bizonyítékot talált korábbi vulkanikus tevékenységre, valamint – nem várt módon – víz jelenlétét mutatta ki a Merkúr exoszférájában. Végső pályára állása után az eredetileg 2012-ig tartó küldetését egy évvel meghosszabbították. 2013-ban két, a közelben elhaladó üstökös tanulmányozásában is részt vett. 2015-re az űrszonda hajtóanyaga elfogyott, a fedélzetén megmaradt hélium felhasználásával az irányítóközpont a Merkúr felszínébe vezette. A becsapódásra 2015. április 30-án került sor a bolygó Suisei Planitia nevű medencéjében.

A Messenger a Merkúrnál. (NASA)

 

  • BepiColombo: A BepiColombo űrszonda (mely nevét Giuseppe „Bepi” Colombo olasz asztrofizikus után kapta, aki nevéhez fűződik többek közt a hintamanőver kidolgozása) az Európai (ESA) és a Japán Űrügynökség (JAXA) közös projektje a Merkúr tanulmányozására. A küldetés tulajdonképpen egy műholdpár együttes indítását takarja: a Mercury Planetary Orbiter (MPO, gyártja az ESA), és a Mercury Magnetospheric Orbiter (Mio/MMO, gyártja a JAXA), melyek együtt a Mercury Transfer Module egységen (MTM, gyártja az ESA) indultak el 2018. október 20-án (a hordozóeszköz egy Ariane-5 rakéta). Az ESA számára a részegységeket az Airbus gyártja.

A szondapár 7 évig fog utazni, meghajtásáról ionhajtóművek gondoskodnak. 2025 decemberében fognak a Merkúr körül orbitális pályára állni, majd szétválva kb. egy éven át tanulmányozzák a bolygót. Fő feladataik: egy csillagához közeli bolygó keletkezésének és fejlődésének tanulmányozása; a Merkúr, mint bolygó tanulmányozása (alak, belső szerkezet, összetétel, geográfia, kráterek); az exoszféra vizsgálata; a magnetoszféra és mágneses mező vizsgálata; valamint Einstein relativitáselméletének igazolásához is igyekeznek hozzájárulni (a „paraméterezett poszt-newtoni formalizmus” gamma és béta értékének nagy pontosságú megmérése).

Az MPO műszerparkja: lézeres távolságmérő; gyorsulásmérő; magnetométer; IR spektrométer; gamma és neutronspektrométer; röntgen spektrométer; UV spektrofotométer; semleges és töltött részecskeelemző; nagy felbontású és sztereokamerák; valamint napintenzitást vizsgáló röntgen és részecske spektrométer.

Az MMO műszerparkja: elektron analizátorok, ion analizátorok, tömegspektrométer, nagy energiájú részecskeelemzők elektronok és ionok részére, magnetométer, plazmahullám elemző, kén atmoszféra képalkotó; valamit kozmikus por elemző.

A BepiColombo. (ESA)

 

Szerző: Szekretár Zsolt

(folytatása következik)

BepiColombo: irány a Merkúr!

Ma, október 20-án, helyi idő szerint hajnali 3:45-kor indult el a Merkúr felé az európai (ESA) – japán (JAXA) koprodukcióban készült BepiColombo nevű űrszonda a dél-amerikai Kourou Űrközpontból, Francia Guyanából.

Az ESA és a JAXA közös küldetése, a BepiColombo. (Kép: Arianespace.com)

A BepiColombo célja Naprendszerünk legbelső bolygója, a Merkúr. Küldetésének célja egyrészt új technológiák, például a Nap hőjének ellenálló anyagok tesztelése; másrészt a Merkúr eddig feltáratlan rejtélyeinek kivizsgálása. Valójában nem is egy, hanem két űrszonda utazik a bolygó felé,  egy európai és egy japán szonda, összekapcsolódva. Feladataik közé tartozik többek között a Merkúr mágneses mezejének, belső szerkezetének, rejtélyes zsugorodásának vizsgálata épp úgy, mint annak a kiderítése, hogyan jöhetett létre egy bolygó ilyen közel a Napunkhoz.

A fellövés pillanatai. Képek: ESA/facebook.

Az űrszonda megérkezéséig azonban sokat kell várni: a különböző hintamanőverek miatt – melyeknek célja a szonda pályájának a Merkúr pályájával történő minél pontosabb szinkronizálása – a BepiColombo csak 2025. decemberében fog pályára állni a bolygó körül, melyet a tervek szerint két évig fog tanulmányozni.

Kép: Arianespace.com

Forrás: ESA, Arianespace, Facebook.

Szerző: Planetology.hu

Zerinváry Szilárd: Nem teljesen kötött a Merkur tengelyforgása

A Föld két legfontosabb mozgása a tengelyforgása és a Nap körüli keringése. A tengelyforgás ideje 23 óra 56 perc és 4 másodperc, a napkörüli keringés ideje pedig 365 nap 5 óra 48 perc és 46 másodperc. A két mozgás időtartama tehát különböző. Az ilyen bolygó tengelyforgását kötetlennek nevezzük.

Naprendszerünkben azonban több olyan égitestet ismerünk, amelyeknek a keringési és tengelyforgási ideje megegyezik egymással. Ezeknek az égitesteknek a tengelyforgását kötöttnek nevezzük. Jó példa erre a Hold, melynek tengelyforgási ideje megegyezik az egyszeri földkörüli keringési idejével. De nemcsak a mellékbolygók világában találunk példát a kötött tengelyforgásra. Hiszen a bolygók közül a Merkurt mind ez ideig úgy tartottuk számon, mint amelynek a tengelyforgása kötött. A szakkönyvekben úgy olvashatjuk, hogy a Merkur keringési, illetve tengelyforgási ideje 87 nap 23 óra 16 perc, vagyis 87 970 földi nap. (1. sz. ábra.)

1. ábra. Mi a különbség a Hold (I) és a Merkur (II) tengelyforgása közt?
I. Amíg a Hold egy keringést végez, azalatt egyszer megfordul a tengelye körül. Ezért a P-vel jelzett felszíni pontja mindig szembe kerül a Földdel.
II. A Merkur tengelyforgása valamivel gyorsabb, mint a keringése. Emiatt P felszíni pontnak a Földhöz viszonyított helyzete eltolódik. Az ábrán a P pont eltolódása a szemléletesség kedvéért erősen túlzott.

A Merkur kötött tengelyforgását a csillagászok azzal magyarázták, hogy ez a bolygó van a legközelebb a Naphoz és emiatt a Nap tömegvonzása fékezőleg hatott a Merkur tengelyforgására. Ezt a fékező erőt a szakirodalomban árapálykeltő erőnek nevezik. A csillagászok kimutatták, hogy az árapálykeltő erő fordítva arányos a két égitest tömegközéppontjait egymástól elválasztó távolság köbével. Ha például egy csillag körül két bolygó kering és az egyik bolygó háromszor közelebb van a csillaghoz, mint a másik, akkor a közelebbi bolygóval szemben 33-szor, vagyis 27-szer erősebben nyilvánul meg az árapálykeltő erő fékező hatása, mint a másik bolygóval szemben. Ha figyelembe vesszük, hogy a Merkur 57,8, a Föld pedig 149,5 millió km középtávolságban kering a Naptól, akkor megállapíthatjuk, hogy a Merkur kereken 2,6-szer közelebb van a Naphoz, mint a Föld. Ennek megfelelően a Merkurral szemben érvényesülő árapálykeltő erő 2,63-szor, vagyis 17,6-szor nagyobb, mint a Földdel szemben érvényesülő hasonló erő. Ezek alapján könnyen érthető volt, hogy a Merkur tengelyforgása az idők folyamán kötötté vált.

Mindez természetesen nem jelenti azt, hogy a Merkur egyenlítői pontjai nem végeznek rotációs mozgást a térben. Hiszem a Merkur is forog a tengelye körül, csak abban különbözik a Földtől, hogy a tengelyforgási ideje megegyezik a keringési idejével. A Föld egyenlítői pontjai 464 méter utat tesznek meg egy másodperc alatt a tengelyforgás következtében. Ekkora tehát az egyenlítői pontok úgynevezett lineáris sebessége. Ugyanezt a sebességet kiszámíthatjuk a Merkur egyenlítői pontjaira vonatkoztatva is. A Merkur egyenlítőjének kerülete 16 200 km. Másrészről figyelembe véve, hogy a bolygó egyenlítői pontjai kereken 88 nap alatt tesznek meg egy teljes körutat, a Merkur egyenlítői pontjainak a rotációból adódó lineáris sebességére 0,002 km/sec, vagyis 2 méter/sec érték adódik.

Ezzel nagy vonalaiban elmondtuk azt is, amit a bolygó tengelyforgásáról eddig tudtunk. Egy újabb megfigyelési eredmény alapján azonban bizonyos fokig revideálnunk kell a Merkur tengelyforgásával kapcsolatos álláspontunkat. A Pic du Midi obszervatórium kutatói ugyanis a közelmúltban megállapították, hogy a Merkur bolygó tengelyforgása sem teljesen kötött, mint ahogy azt régebben gondoltuk. Az érdekes felfedezés előzményei röviden a következők.

A Pic du Midi obszervatóriumban még 1942–1944 között nagyszámú fényképfelvételt készítettek a Merkurról az ottani 38, illetve 60 cm-es refraktorok segítségével. A felvételek alapján egy új, az eddigieknél (Schiaparelli, Lovell és Antoniadi térképeire gondolunk!) pontosabb térképet készítette a kutatók a bolygó látható félgömbjéről. Mi ugyanis csak a bolygó egyik félgömbjét ismerjük. Erről meggyőzhet bennünket a 2. sz. ábra. Ha meggondoljuk, hogy a bolygó mindig ugyanazon félgömbjét fordítja a Nap felé, akkor megállapíthatjuk, hogy alsó együttállás idejében nem az a félgömbje esik felénk, mint felső együttállása idejében. A mellékelt ábra azonban arról is meggyőz bennünket, hogy ezt a félgömbjét, illetve az azon levő felszíni képződményeket nem láthatjuk, tekintettel arra, hogy ezt a félgömböt nem világítják meg, vagyis nem teszik láthatóvá számunkra a napsugarak. Az éjszakai félgömb hőmérsékletét meg tudjuk mérni (a mérések -265 C°-ot adtak eredményül), de a felszíni képződményeit nem ismerhetjük meg. Közbevetőleg megjegyezzük, hogy a radar csillagászati alkalmazása a remélhetőleg nem is olyan távoli jövőben lehetővé fogja tenni, hogy ezt a félgömböt is „letapogassuk” és letérképezzük. Erre a kérdésre különben még visszatérünk.

2. ábra. Így látjuk a Merkur fázisait pályájának különböző pontjaiban.

A Pic du Midi obszervatóriumban készített új Merkur térképen 28 felszíni képződmény látható. De nem ez az érdekes, hanem az, hogy az elmúlt fél évszázad alatt a bolygó egyes felszíni részleteinek a merkurográfiai (a geográfiai szó analógiájára) helyzete észrevehetően megváltozott. A kutatók ugyanis összehasonlították egymással az 1942. évben készült, illetve a Schiaparelli által 1889-ben rajzolt térképeket. Munkájuk során megállapították, hogy a Merkuron látható és egymással azonosított képződmények merkurográfiai hosszúsága kereken 10°-kal változott meg időközben. Ez a megállapítás elég volt ahhoz, hogy a kutatók kiszámítsák az egyszeri keringés és tengelyforgás időtartamának a különbségét. Ezt a számítást könnyen követhető, egyszerűsített alakban bemutatjuk az olvasóknak.

Induljunk ki abból, hogy 1889–1942 között 53 év, vagyis kereken 19 360 nap telt el. Másrészről említettük azt is, hogy a Merkur keringési ideje 88 nap. Egyszerű osztással meggyőződhetünk arról, hogy az 1889–1942 között eltelt 53 év alatt 220 keringést végzett a bolygó a Nap körül. ezek szerint a 10°-os eltérés 220 keringés folyamán halmozódott fel. Ebből egy keringésre 2,7 szögperc esik. Ez a 2,7 szögperc a bolygó egyenlítőjének 1/8000-ed részével egyenlő.

Ezzel eljutottunk a számításunk utolsó üteméhez. Kérdés, hogy mennyivel egyenlő a 88 napos keringési idő 1/8000-ed része. A két számra vetett futólagos pillantás alapján is megállapíthatjuk, hogy a mi esetünkben szó sem lehet napokról, vagy órákról: legfeljebb percekről beszélhetünk.

A számítást elvégezve 15,8 percet kapunk eredményül. Láthatjuk tehát, hogy a keringés és a tengelyforgás időtartama közötti különbség 16 perc körül mozog.

Mindez azt jelenti, hogy a bolygó tengelyforgása – ha szigorúan kezeljük a dolgot – nem tekinthető mégsem teljesen kötöttnek. Viszont ebből következik az is, hogy a terminátor vonala (a nappali és az éjszakai félgömb határvonala) a bolygó felszínén nyugati irányban fokozatosan eltolódik. Ahhoz, hogy a Nap a jelenlegi éjszakai félgömböt világítsa meg, nyilván annyiszor 53 év szükséges, ahányszor nagyobb a 180° a 10°-nál, tekintettel arra, hogy ez az állapot 180°-os szögelfordulás esetében következik be. Ebből következik, hogy:

53,18= 954, vagyis kereken ezer év múlva válik nappali félgömbbé a jelenlegi éjszakai félgömb. Ezt a számot azonban mindenképpen csak nagyságrendi számnak tekinthetjük. Ennek két oka van. Először is további pontos megfigyelések szükségesek az eltolódás mértékének még pontosabb tisztázása céljából. Másodszor, azt is figyelembe kell vennünk, hogy az árapálykeltő erő fékező hatása az elkövetkező időben is tovább fogja csökkenteni a bolygó tengelyforgásának a szögsebességét. Hiszen ez az erő arra irányul, hogy a két mozgás időtartamát (vagyis a keringés és a tengelyforgás időtartamát) tökéletesen szinkronizálja. Minden valószínűséggel állíthatjuk tehát, hogy ez a 180°-os szögeltérés nem 1000 év, hanem hosszabb idő alatt fog végbemenni. Megjegyezzük egyébként, hogy minden idevonatkozó számítást megnehezít az, hogy a bolygónak nincs holdja és ezért még ma sem ismerjük egészen pontosan a tömegét.

Kérdés ezek után, hogy vajon előreláthatólag mikor fogjuk megismerni a bolygó éjszakai félgömbjét? Láttuk, hogy körülbelül ezer évig kellene erre várnunk, ha ki akarnánk „böjtölni” a bolygó 180°-os szögelfordulását. Utaltunk azonban már arra is, hogy a radar csillagászati alkalmazása révén ezt az időt valószínűleg le fogjuk tudni rövidíteni. Hiszen a radar fejlődése igen gyors. Előre megjósoljuk tehát, hogy ebben a versenyben az emberi technika fog győzni. Mire a bolygó „rászánja” magát, hogy 180°-kal elforduljon (a Naphoz viszonyítva), addig már régesrég le fogjuk térképezni radarral az éjszakai félgömbjét.

Az eddig mondottakból egy érdekes további következtetést vonhatunk le. Amennyiben ugyanis szigorúan kezeljük a kérdést, kiderül, hogy a bolygó nyugati és keleti terminátorának a vidéke nem azonos hőmérsékletű. Ezt a 3. sz. ábránk szemlélteti. Az ábrán P-vel a bolygó északi sarkát, AB-vel pedig a jelenlegi terminátor vonalát ábrázoltuk. Felvetődik tehát a kérdés, hogy melyik pontban magasabb a bolygó hőmérséklete: az A vagy a B pontban?

3. ábra. Melyik terminátor közelében magasabb a hőmérséklet a Merkuron? (L. a szöveget.)

Ha figyelembe vesszük, hogy a bolygó tengelyforgása direkt (vagyis nyugat–keleti) irányú, könnyen választ adhatunk erre a kérdésre. Haladjunk csak gondolatban visszafelé a bolygó múltjába és azonnal világossá válik előttünk, hogy az A és B pontok helyzete bizonyos idővel napjaink előtt nem egyezett meg a jelenlegivel. Eszerint az A pont az A1-gyel, a B pont mondjuk valahol B1-gyel jelölt helyzetben volt a Naphoz képest. Ilyen módon a B pontot a múltban nagyobb szög alatt érték a napsugarak, mint jelenleg. A B pont tehát még feltehetőleg bizonyos maradék hőmennyiséget őriz azokból az időkből. Ezzel szemben az A pont a múltban A1 helyzetben, vagyis a bolygó éjszakai félgömbjén volt. Ez a pont egyre nagyobb szög alatt részesül a Nap sugaraiban. Mindezt egybevetve a B pontban lehűlés, az A pontban pedig felmelegedés folyik, vagyis a B pont környéke valamivel magasabb hőmérsékletű, mint az A ponté.

A kérdéssel kapcsolatban még egy újabb felfedezésről is megemlékezünk. A Pic du Midi obszervatórium kutatói azt is megállapították, hogy 1889–1942 között az egyes felszíni képződmények merkurográfiai szélessége is észrevehetőleg megváltozott. A képződmények szélességváltozását figyelembe véve a csillagászok kiszámították, hogy a bolygó egyenlítőjének síkja 7°-os szöget zár be pályasíkjával. Ennek a hajlásszögnek az értéke napjainkig ismeretlen volt. Összehasonlítás céljából egyébként megemlíthetjük, hogy a Föld pályasíkja és egyenlítői síkja 23° 27’-es szöget zárnak be egymással.

Végül megemlíthetjük, hogy az ebben a rövid beszámolónkban közölt adatokat csak a közelmúltban publikálták a Pic du Midi obszervatórium kutatói. Az 1942–1944 között készített felvételek pontos kimérése, az 1889. évi térképpel való egybevetése és az új Merkur-térkép megrajzolása ugyanis huzamosabb időt vett igénybe. Ezt az időt meghosszabbította az is, hogy az obszervatórium sokoldalú munkaprogramja miatt a kutatók természetesen nemcsak ezzel az egyetlen kérdéssel foglalkoztak az elmúlt évek során.

A Csillagok Világa 1956/3-4. számában megjelent írás másodközlése. A Zerinváry család hozzájárulásával. A cikket eredeti helyesírással közöljük.

Szerző: Planetology.hu