Debrecentől Kabáig

A debreceni Magnitúdó Csillagászati Egyesület néhány oszlopos tagja 2020. október 3-án, egy szakmai kirándulás keretében Kabára utazott, hogy felkeresse az 1857-ben hullott meteorit emlékműveit. Szoboszlai Endre cikke.



Ellátogattunk a híres kabai meteorit lezuhanási helyére

Október első szombatján kirándulást szerveztünk a kabai meteorit lezuhanási helyére, Kaba város határába. Először a város központjában megnéztünk minden látnivalót, szobrokat, épületeket… Többek között láttuk a központban felállított emlékkövet is, melyre a meteorithullás tényét “vésték” kőbe, majd kimentünk a határ azon pontjához, ahol a lezuhanás helyén felállított emlékkövet találhatja meg minden “csillagász-zarándok“.

A hullás helyén. Fotók: Károlyi Gábor, Zajácz György


A szenzációs esemény még 1857. április 15-én este történt Kaba város határában.

Ekkor hullott le a világ talán leghíresebb, majd három kilogrammos szenes kondrit meteoritja, melyről kevesen tudják, hogy megtalálása lényegében egy lovasgazdának és annak lovának köszönhető… A korabeli híradások kisebb nagyobb eltérésekkel számolnak be az eseményről. A történés valószínűleg a következő lehetett: Szilágyi Gábor a házának tornácán elszenderült. Majd a szabadtéri szundikálásból arra riadt fel, 22 óra körül, hogy nagy robaj van! Pillanatokon belül az égbolton megpillantott egy fényes tűzgolyót, mely lángoló csóvát húzott, majd pár pillanat múlva becsapódott, vélhetően a közelben. A földi légkörbe beérkező, száguldó meteoritot látta a gazda. A meteorit a súrlódás miatt felizzott, külső része elégett, de így is egy közel három kilogramm tömegű szenes kondrit meteorit kerülhetett a tudomány kezébe…



A maga módján a derék ló is jelzett

Másnap a figyelmes gazda kilovagolt a tanyájára, de útközben, a becsapódás közvetlen közelében a lova megbokrosodott, majd horkantott és végül nem akart tovább menni! Ekkor Szilágyi Gábor meglátta a becsapódás helyét, melyet röviddel a megtalálás után több ismerősével feltárt. Ezt követően szerencsére a település elöljárósága is hírt kapott a ritka égi-földi eseményről, majd értesítették a Debreceni Református Kollégiumot. A tudósoknak köszönhetően ezt követően indult a világhírnév felé a ritka égi ajándék. Az évtizedek során sok város (Göttingen, Bécs, London, Moszkva, Párizs stb.) világhírű intézeteibe is elkerült a kő pár lenyesett darabja, elemzésekre. A kabai meteorit korabeli vizsgálata számos új felismeréssel ajándékozta meg a tudományt, mivel különleges, ritka összetételű (szerves anyagot is találtak benne). Ráadásul ez a meteorit a Naprendszerünk kezdeti időszakának a hírnöke lett, hiszen anyaga a jó négymilliárd évvel ez előtti ősi állapotokat őrizte meg!

A város több helyen is példamutatón megőrizte az esemény emlékét


A Debreceni Kollégium nem hagyta elvinni a követ

A világhírnévre szert tett kabai meteoritot a korabeli Habsburg-udvar szerette volna megkaparintani, azonban a Debreceni Református Kollégium vezetősége ezt ügyes fondorlatokkal meghiúsította! Így a ritka égi ajándék eredeti fődarabja, mely a mintavételezések miatt ma már csak körülbelül 2,6 kg, jelenleg is a Debreceni Református Kollégium féltve őrzött kincse.
Kaba város a becsapódás napját, április tizenötödikét, a közelmúltban a Város Napja ünnepének nyilvánította, és emlékhelyet létesített a helyszínen.

Akik részesei voltak a kirándulásnak: Gyarmathy István, Károlyi Gábor, Károlyi Gáborné Eta, Kocsis István, Simándiné Éva, Szoboszlai Endre, Zajácz György.

Forrás: MACSED

Bolygós rövidhírek: néhány darabka Vesta a Bennu kisbolygón

Szerző: Kereszty Zsolt

A (4) Vesta kisbolygót a múltban egy hatalmas robbanás szinte teljesen szétvetette. Ez az ütközés a Vestának szerencsétlenség, de nekünk szerencse, ugyanis ez indította útjára a Vesta-i eredetűnek sejtett HED akondrit meteoritokat, melyek aztán kikötöttek a kutatók műszereiben vagy a gyűjtők dobozaiban… 🙂

A NASA OSIRIS-REx űrszondája által készített felvételek a (101955) Bennu kisbolygó felszínéről, melynek felszínén minden bizonnyal a Vestáról származó, piroxénben gazdag törmelékdarabok látszanak (NASA)

A hatalmas kataklizmikus ütközési (szaknyelven impakt) esemény jelentős anyagmennyiséget szórt szét a Vesta-ról a környezetében. Egyes darabjai akár más kisbolygók felszínén is kiköthettek.

A NASA OSIRIS-REx űrszondája egy új eredmény szerint észrevett az általa tanulmányozott (101955) Bennu kisbolygón néhány HED (azaz a Vestáról származó) anyagnak tűnő szikladarabot.

Forrás: NASA

A XVII. Országos Felsőoktatási Környezettudományi Diákkonferencia eredményhirdetésén

Szerző: Rezsabek Nándor

Szeptember 15-én a Szent István Egyetem Gödöllői Campusán került sor a XVII. Országos Felsőoktatási Környezettudományi Diákkonferencia (OFKD) ünnepélyes eredményhirdetésére. A még az előző tanévhez kötődő, de a koronavírus-járvány okán őszre tolódott eseményt a fővédnök, Dr. Áder János, Magyarország köztársasági elnöke videóüzenetben köszöntötte. Az alkalmat jelenlétével és hozzászólásával megtisztelte a Szent István Egyetem több vezetője. Az előadások sorában három díjnyertes diák adott számot kiemelkedő szakmai tudásáról és izgalmas kutatási témájáról.

A „környezettanos OTDK”-n 14 szekcióban 134 pályamű versenyzett. Az éllovas ELTE TTK, SZIE MKK, PTE TTK, SZTE TTIK, DE MÉK, DE TTK, valamint minden további résztvevők mellett, személyemben a WJLF Környezetbiztonsági Tanszék is képviseltette magát. Nagy büszkeséggel tölt el, hogy a Földtudományok I. szekcióban benyújtott dolgozatom pozitív bírálatot kapott, majd napvilágot látott a nagy hagyományokkal rendelkező versenysorozat absztraktkötetében. Megtisztelő módon ennek 70. oldalán olvasható a Morasko, Ries és Steinheim asztroblémek – környezeti és geomorfológiai megállapítások című, Dr. Géczi Róbert tanár úr témavezetésével meteoritikai kutatási témámra épülő pályaművem összefoglalója. (Elektronikusan elérhető a következő linken: http://www.ofkd2020.hu/sites/default/files/xvii._ofkd_absztraktkotet.pdf)

A staféta átadása is megtörtént: a 2022-es OFKD helyszíne Pécs, szervezője a Pécsi Tudományegyetem Természettudományi Kara. A 2020-as konferencia az egyetemi Mezőgazdasági Eszköz- és Gépfejlődéstörténeti Szakmúzeum tudománytörténeti kiállítási tárgyai közepette megtartott fogadással zárult. Végezetül idézem Dr. Czóbel Szilárdot, a konferencia szervezőbizottságának elnökét az eseménysorozat rangját és fontosságát illetően: A részvételnek is presztízse van.

Bolygós rövidhírek: új ausztrál asztroblémet fedeztek fel

Szerző: Rezsabek Nándor

Ausztrál kutatók a közismert Wolfe Creek-kráter méretét ötszörösen meghaladó asztroblémet fedeztek fel Nyugat-Ausztráliában. Az Ora Banda városától 10 km-rel délkeletre található objektum részletei a felszínen nem azonosíthatók – vizsgálata geofizikai és geológia módszerekkel lehetséges. Átmérője 5 km-es, és egy 100 m-es impaktor hozhatta létre. A Curtin University munkatársai korát 100 millió évre becsülik. Felfedezéséhez a becsapódás lökéshullámát „magukba záró” ún. nyomáskúpos kőzetek (shatter cone) adták a megfejtési kulcsot.

A Wolfe Creek kráter Ausztráliában. Fotó: Wikipedia

Forrás: ABC.net

Meteoritok azonosítása

Szerző: Kereszty Zsolt

Bevezetés

Az alábbi útmutató célja, hogy segítsen a meteoritnak gondolt kőzet, tárgy házilagos, egyszerű módszerekkel történő beazonosításában, hogy az valóban, a Világűrből érkezett meteorit-e vagy földi kőzet esetleg emberi műtermék. Összefoglaló, azonosítást segítő leírásom nem ad 100% pontos eredményt, ilyet ne várjon tőle senki, kizárólag tájékoztató jellegű és nem pótolja a felkészült meteorit szakértő és felszerelt laboratórium vizsgálatait. Ne feledjük, a meteorit Földünkön nagyon-nagyon ritka természetes eredetű objektum, két egyforma nincs belőle és még az itt leírtakhoz képest is lehetnek egyedi eltérések és változatok. A szakszerű és megnyugtató eredményű meteorit azonosításhoz erre felkészült és az azonosításban nagy gyakorlattal rendelkező laboratórium és szakember részletes és műszeres vizsgálata szükséges, olykor még tapasztalt geológus szakember is tévedhet az azonosításban!


A fogalmak:

A meteorit a világűrből érkező természetes objektum, ami a Föld (vagy egy másik égitest, például a Hold, a Mars stb.) felszínével való ütközéskor nem semmisül meg, túléli a zuhanást és eléri a felszínt. Amíg az űrben mozog és 1 méteresnél kisebb, meteoroidnak nevezzük. Amikor belép a légkörbe, a légellenállás okozta súrlódás hatására felforrósodik, plazma-csatornát és tűzgolyót létrehozva elektromágneses sugárzást, pl. fényt bocsát ki, esetleg hangot. A jelenséget magát meteornak vagy közismertebb nevén hullócsillagnak hívjuk. A tűzgömb olyan meteor, melynek látszó fényessége meghaladja a Vénusz legnagyobb fényességét, ami -4 magnitúdó (jele: mg). Ezek általában kiemelkedő fényjelességgel, esetleg hangmorajlással járnak. A bolida olyan felrobbanó tűzgömb, ami jelentős, általában hangrobbanáshoz hasonlító jelentős hanghatással jár, mely akár sok sok kilométerre is elhallatszik. A meteoritokat adó tűzgömbök, szinte minden esetben bolidák, fényességük kimagasló, általában jóval meghaladja a telihold fényességét -12 magnitúdót. Ha a bolida fényessége meghaladja a -17 mg-t akkor szuperbolidának nevezzük, ezek szinte minden esetben meteoritot hagynak maguk után.

A meteoritokat a Nemzetközi Meteoritikai Társaság digitális adatbázisa a Meteoritical Bulletin tartja nyilván, e sorok írásakor kb. 62000 db-ot katalogizáltak. Ebből mindössze kb. 1300 db az olyan, aminek hullását szemtanúk látták, megörökítették, dokumentálták, az összes többit találták további ismert hullási adat, időpont, egyéb nélkül. A meteoritok terület arányosan hullanak, nincsen ismert  kitüntetett hely. Olyan viszont van ahol jól megőrződtek, konzerválódtak, ezek a száraz sivatagok és az Antarktisz. Legtöbbjük ugyanis a földi nedvesség hatására változó mértékben de mállik, sőt egyes lazább típusok egyszerűen elporladnak. Legjobban a vasmeteoritok anyaga marad meg, legkevésbé a széntartalmú és laza szerkezetű ún. szenes kondritoké. Emiatt – érdekes ellentmondás, de – az ismert összes meteorit össztömegének 90 %-át a vasmeteoritok adják.

A meteoritokat mindig a hullási/találási hely földrajzi neve alapján nevezik el, ismert emberről, nevezetességről, stb. nem. Ha egy helyen több meteoritot is találnak eltérő időpontokban, akkor a nevet általában egy szám vagy betű követi (pl. Dimmitt(a) vagy a második esetben már Dimmitt(b).). Szokás még, hogy a sivatagos Észak-nyugat Szahara nagy számban talált meteoritjai esetén, amikor nem ismert pontosan a találási hely de a nagyjábóli régió igen, akkor az NWA betűk után egy sorszámot tesznek és ez lesz a meteorit neve pl. NWA 12692.

A meteoritokat legfontosabb adataik megadásával tartják nyilván, ezek a következők: név, hullási/találási történet, hely, időpont, típus, teljes ismert tömeg (angolul Total Known Weight, rövidítve TKW), fizikai leírás, összetétel, egyéb. A mai magyarországi határainkon belül jelenleg mindössze 8 db magyar meteoritot ismerünk, kezdve az első, 1857-ben hullott kabai meteorittól a 2016-ban talált Kölked nevű kondrit meteoritig.


A meteoritokat korábban három kategóriába sorolták:

  • kőmeteoritok olyan kőzetdarabok, melyek főleg változó mennyiségű vas-nikkel szemcsékből, szilikát ásványokból állnak, ezek az összes hullás 94,5 %-át adják

  • vasmeteoritok főleg vas-nikkelből állnak, az összes hullás 4,5 %-át adják

  • kő-vas meteoritok kb. 50-50 % vasnikkel és olivin vagy szilikátos anyagok keveréke, 1 %

A modern meteorit osztályozási módszerek – az egyszerű kategóriába sorolás helyett – már figyelembe veszik a meteorit eredeti származási szülőégitestjének anyagát, annak átalakulási mértékét, kémiai és izotóp összetételét és ásványtani szempontokat.


A meteoritok modern, korszerű szempontú csoportosítása

A tudomány és a mérési módszerek, eszközök egyidejű fejlődésével Dr. John T. Wasson 1974-ben egy még részletesebb és egységes rendszerbe foglalt osztályozást vezetett be, amit napjainkban is használunk. Ő nem típusokban gondolkodott, hanem a meteoritok szülőégitestjének fejlődéstörténetébe illesztette az egyes meteoritokat. Így megkülönbözetett eredetileg, kevésbé át illetve felmelegedett anyagú ősi kiségitestből származó meteoritokat, amit differenciálatlan (nem átalakult) meteoritoknak nevezett.

Ide tartoznak az eredetileg nagyon kicsi méretű  – pár százméteres esetleg 1-2 km-es -, alig átmelegedett szülőégitest maradványok a széntartalmú szenes kondrit meteoritok, típusaik, jelük: CI, CV, CM, CR, CH, CB, CK, CO, C-ung (pl. az 1857-es magyar Kaba CV3).

A már nagyobb – pár tucat esetleg száz km-es – szülőégitestek maradványai, az “átsült” kőzet anyagot adó normál vagy közönséges kondritok, típusaik, jelük: H, L, LL (pl. Csátalja H4, Mike L6), az ensztatit kondritok (EL, EH) és az egzotikus de egyben ritka kondrit típusok (rumuruti, kakangari) illetve a primitív akondritok képviselői (akapulkóit, brachinit, lodranit, ureilit, winonait). Ezen kiségitestek csillagászati méretskálán át nézve igen kicsinyek voltak, anyaguk csak kissé melegedett fel (szenes kondritok: 50-200 C) illetve a csak a normál kondritok esetén tudott szinte “átsülni” (600-1200 C) a szupernóvákból származó Al26 illetve Fe60 rövid felezési idejű radioaktív izotópok fűtésétől, ütközési folyamatokból származó impakt hőenergiától, esetleg a kisebbek esetén a víz és szilikátok exoterm reakciós energiájától. A szakemberek azt gondolják, hogy ezen meteoritok képviselői őrizték meg legjobban a preszoláris (naprendszer keletkezése előtti) anyagszemcsék eredeti állapotát.

A másik nagy csoport, a differenciált jellegű, azaz teljesen átolvadt anyagú ősi szülőégitestek, amik átmérője akár 1000-1500 km-es is lehetett, magjuk akár 2000 C fok fölé is felmelegedhetett, így anyaguk teljes mértékben átolvadt, zónásan szétszeparálódott, szaknyelven differenciálódott. A nehezebb sűrűségű vas-nikkel szinte lefolyt a magba, létrehozva ott a vasmeteoritok zónáját, a bazaltos átolvadt köpenyanyag pedig az akondritokat. A kettő határán jöhettek létre a ritka szépségű különleges kő-vas meteoritok. Az ősi kiségitest anyaga és  az ezekből származó meteoritok szövetszerkezete nem mutat kondritos jelleget ezért nevük: akondritok. Képviselői a vasmeteoritok, kő-vas meteoritok, a vestai eredetű HED meteoritok, a holdi, marsi meteoritok és a tovább már nem besorolható akondritok. Ez röviden a ma használatos Wasson-féle meteorit osztályozás lényege.

A meteoritok típusai a mai modern osztályozás alapján
A meteoritok származás alapján történő besorolása

A meteoritok egy másik szempontú csoportosítása

  • szemtanús hullások, valaki(k) látta(ák) – angolul “falls” 

  • a felszínen megtalált meteoritok – itt nincs feljegyzés, dokumentum a hullásról – angolul “finds”

  • meteorit párok – azonos hullás, de időben, később is találnak belőlük, akár többször is

  • antarktiszi meteoritok – az Antarktsz valójában száraz “jégsivatag”, jól konzerválódnak itt

  • forró sivatagi eredetűek – pl Szahara, Omán – szintén jól konzerválódnak


Szemtanús meteorit hullások (angolul “witnessed fall”):

Ezek olyan nagyon ritka hullások, melyeket egy vagy több személy látta, a feljegyzések, dokumentumok fennmaradtak vagy a mai kor kamera rendszerei dokumentáltan és igazoltan (!) megörökítették. Ezen sorok írásakor, mint említettem kb. 1300 db ilyet ismerünk 1492 – az első Ensisheim-i meteorit – óta, ami eltörpül a mai ismert és katalógusba vett kb. 62 000 db meteorit mellett, mindössze 2 %. Földünkön éves szinten manapság kb. 8-15 db ilyen meteorit hullás várható, vannak évek amikor kevesebb és van amikor több. Léteznek a még ritkább un. “hammer fall” hullások, amikor a meteorit valamibe vagy valakibe csapódik (leírtak már emberbe, kutyába, tehénbe, lóba, házba, autóba, hajóba, postaládába, stb. való becsapódást is), nyilván az ilyen hullásokat a legkönnyebb megtalálni, de hát ezek statisztikailag szinte “nem is létező”.

A szemtanús hullások legtöbbje sok-sok meteorit darabot produkál, ritkább amikor csak egy db esik le. Ha statisztikailag tekintjük egy hullás átlagos tömegét, akkor jó közelítéssel mondható, hogy a teljes Ismert tömeg  egy-egy hullásnál 67 %-os valószínűséggel 0,5-15 kg tartományba esik (természetesen ismerünk néhány tíz gr-os és 26 tonnás szemtanús hullást is). Az évszakos statisztikát vizsgálva, érdekes hogy a tavaszi és nyári időszak, mintha több meteorit hullás produkálna meg kell jegyezni, hogy ez csak a 2000-es évektől üzemben álló modern tűzgömb figyelő kamerarendszereink által biztosított és pontosabb pályaszámítást lehetővé tevő adatok szerint kalkulálható, viszonylag kevés (kb. 100 db) adatpárból).

Vizsgáljuk meg a szemtanús hullások meteorit típusonkénti megoszlását. Az alábbi ábrákon látható, hogy a kondrit meteoritok adják az elsöprő többséget, kis túlzással mondható, hogy minden 10 hullásból kb. 9 db kondrit lesz. Máshogy és eltúlzóan fogalmazva, ha hullik meteorit az szinte mindig kőmeteorit. A megmaradó 10 %-ot fele-fele arányban képviselik a vasmeteoritok és az akondritok. Elenyésző a kő-vas meteoritok aránya.

Az arány teljesen más ha a talált (vagyis a nem szemtanús) meteoritokat is nézzük, ebben az esetben még több lesz a kondrit meteorit! Érdekes ellentmondás, hogy az összes ismert meteorit tömegének 90 %-át a vasmeteoritok adják és maradék az összes többi. Vagyis a lehullott, talált meteortok közül bár a vasmeteorit nagyon ritka típus, viszont ezek adják az ismert meteoritok többségét, tömeg (“súly”) szerint. 

Az említett statisztikák:


A talált meteoritok (szemtanú nélküli hullások):

Az ilyen meteoritra egyszerűen valaki csak rábukkan, hullásuk időpontja, részletei egyáltalán nem vagy csak nagyon bizonytalanul ismert, szemtanúk nincsenek. Földi koruk (az az idő amit hullás óta eltelt), néhány évtől a több ezer évig terjedhet. Éppen ez adja a problémát, ugyanis a földi erózió, ideértve a nedvességet, szelet, hőmérséklet ingadozást, egyéb kémiai, fizikai, geológiai módosító hatásokat, emberi tevékenység hatásait – műtrágyázás, egyéb – különböző mértékben hat a meteorit felszínére és belső szerkezetére. Szaknyelven ezen hatások összességét hívják mállásnak, angolul “weathering”. Általában mondható, hogy az európai nedvesebb időjárás miatt, már néhány (!) nap vagy hónap elegendő, hogy a frissen hullott meteorit felszíne oxidálódni kezdjen. Az eredetileg szép fekete olvadási kéreggel borított meteorit felszíne oxidálódni kezd és vörösessé válik. Ez először a meteorit repedezett olvadási kérgének hajszál-repedéseiben jelenik meg, majd egyre bentebb akár mm-es mélységben is behatol. Évek alatt a meteorit az avar, fű, mezőgazdasági növények alá kerül és egyre jobban lesüllyed, ezután már csak igen nagy szerencsével és/vagy fémkeresővel vagy szántáskor találhatunk rá. A sok száz vagy ezer évet nedves földben eltöltött idő alatt a kőmetorit mállása idővel felőrli a mintát és csak nagyon ritka körülmények megléte esetén találhatunk meg belőle valamit. Ezek a nagyon ritka “fosszilizálódott meteoritok”, ilyenek maradványait pl. mészkőbe ágyazódva találták egyes északi országok kőbányáiban. A legtöbb esetben azonban a minta elvész a kutatók számára. A ritka akondrit vagy szenes kondrit meteoritoknál, azok lazább szerkezete miatt a fenti folyamat felgyorsul és még nehezebb ezeket sok-sok évvel a hullás után megtalálni. Ráadásul fémkereső ezeket nehezebben veszi észre a rendkívül kicsi FeNi tartalmuk miatt. Természetesen léteznek olyan hatások is, hogy a korábban felszín alá került meteorit valamilyen hatásra felszínre kerül (kimosódás, szél, emberi tevékenység, stb.) és bár régebben hullhatott, mégis a felszínen találunk rá a rozsdás, mállott felületű meteoritra.

Más a helyzet a vasmeteoritoknál. Az összefüggő tömör FeNi szerkezet miatt ezek földi mállása lassúbb, nem ritka, hogy több ezer éves vasmeteorit hullásokat sikerül felfedezni, akár több méteres mélységben is. Kérgük színe néhány év alatt rozsdabarnára, vöröses-barnára változik, lényegében a köznapi értelemben vett réteges (leveles) rozsda keletkezik rajtuk, ezt a szakirodalom “shale”-nek nevezi. Több  évszázad alatt ez a rozsdaréteg megnövekszik akár több cm-es vastagságúra. A kisebb néhány tucat gr-os régi vasmeteoritok viszont elveszhetnek.


A jövőben megtalált magyar meteoritokra vonatkozó szubjektív becslés:

Magyarország nedves környezeti zónában fekszik, -eltérően a sivatagoktól – nálunk gyakori a csapadék,  nedvesség. Ez különösen nem kedvez a kőmeteoritok anyagának, de a vasmeteoritok kérge is hamar oxidálódik. Ezt a gondolatot hazánk nedves-mállási körülményeire kiterjesztve, a régebben hullott meteoritokra a következőket várhatjuk ( ez persze nem kizárólagos előrejelzés, eltérés lehetséges ):

  • kondrit, akondrit kőmeteorit esetében: várhatóan nem grammos, nem néhány tíz grammos, hanem nagyobb – inkább több kg-os tömeggel várhatjuk őket, lásd Csátalja H4 meteorit, kb. 16 kg-os tömegével földből, szántásból előkerülve. Ez megkönnyíti a fémkeresős keresést, mert a nagyobb tömeg várhatóan jobb jelet vagy nagyobb érzékelési mélységet adhat.

  • vas- és kő-vas meteorit esetében: hasonlóan nem grammos, nem néhány tíz grammos és nem néhány cm-es mintákat várunk, hanem fél vagy akár több kg-os mintákat, különböző mértékben oxidált kéreggel és változatos formákban várunk. Ld. Szlovákiában nemrégiben előkerült egy vasmeteorit a földből, ami több kg-os volt.

Érdemes azonban meggondolni, hogy hazánk évtizedekig a “vas és acél” országa volt, ezért hatalmas mennyiségben jutott ipari fémhulladék (főleg vasipari hulladék, melléktermék de könnyűfém is) az ország teljesen lehetetlen szegleteibe is. Emiatt a terepen nagyon gyakori a kohósalak, az acélgyártási hulladék, de akár a háborús tevékenység nyomai, repeszek, lőszerek, stb. Az intézetekbe bekerült minták igen nagy százaléka ilyen – téves – minta.

A Földön talált meteoritok legtöbbje kondrit vagy akondrit, ami arányaiban sokkal nagyobb rész, mint a vas- és kő-vas meteoritoké. Nincs ez máshogy itthon sem, vagyis ha találunk itthon a jövőben meteoritot az leginkább kőmeteorit lesz semmint  vas vagy kő-vas.

Fontos dolog az is, ha valaha találunk egy meteoritot, akkor mindenképpen meg kell kutassuk a közeli és távolabbi környékét is, mert esélyes, hogy ún. meteorit szórásmezőre bukkantunk és így előkerülhetnek további példányok, mint erre számos példa ismert..


Friss hullású meteoritok általános jellemzői:

Friss hullás, az ami néhány órája, napja, hete történt. Néhány kg-ot produkáló hullás esetén a meteorit a földfelszínen található és szabad szemmel észrevehető, ezek kereséséhez nem kell fémkereső. Ritkán előfordulhat, hogy ennél nagyobb tömegű test hullik le, ami földbe fúródik, krátert üt méghozzá jól látható módon. Általában ilyeneknél a földrengés jelző obszervatóriumok mérhetik ennek jeleit, amiből kiháromszögelhető a földet érési körzet. Sok lehullott meteorit már szórás mezőt alkot, a korábban említettek szerint. Fémdetektor csak magas fű, akadályokkal teli környezet esetén szükséges, egyébként nagyon lelassítja a munkát. Speciális eset ha tóba, folyóba esik, mint a 2013-as Cseljabinszk kőmeteorit legnagyobb példánya, ilyenkor látszódik a hóba, jégbe hatolás kürtője, lékje.

A meteoritot a legtöbb esetben vonzza (kiéve marsi, holdi szuper ritka meteorit típus) a nagyon erős Neodímium mágnes (N52 típus a legjobb, kapható mágnesekkel foglakozó szakboltokban). Érdemes a mágnes felkötni egy kb félméteres cérnaszálra és figyelni, hogy a minta mellett elhúzva az kileng vagy sem. Ha igen, az jó jel. A meteorit maga nem vonzza a vasa, azaz nem mágneses, de vonzza a mágnest

A meteorit sűrűsége eltér a földi anyagokétól, mivel FeNi-t tartalmaznak, ezért általában nehezebbek azoktól. Fontos tudni, hogy azonnal hullás után nem izzanak, nem forróak, mindössze néhányról állították a szemtanúk, hogy kissé langyosak voltak és legtöbbször hideg tapintásúak, sőt egyesek deresekNem égetik, nem olvasztják meg a környezetüket. További tévhitek eloszlatása érdekében, elmondható, hogy legtöbbször nem üregesek, nem sugároznak, nem hordozzák betegségek kórokozóit sőt egyáltalán nem veszélyesek az élőlényekre, egyes ritka esetekben “füst szagúak”.


A frissen hullott kőmeteoritok (kondritok, szenes kondritok, akondritok):

Az ilyen kőmeteorit felszínét vékony, 1 mm-nél vékonyabb, fényes vagy matt fekete, esetleg barnás (de sohasem más színű zöld, piros, stb.) olvadási kéreg borítja. A kéreg gyakran apróbb-nagyobb gödröcskékkel, ún. regmagliptekkel tagolt, estenként szálas folyásnyomok láthatók rajta. A felület lehet törött, ezáltal láthatóvá válik a meteorit belső szerkezete, ami általában világos, pl. szürke színű. Benne szeplősen elszórt ezüstösen csillogó apró pöttyök, a FeNi fémfázis láthatók. Emellett  sötét ún. sokkolt erek vagy becsapódáskori megolvadások (angolul “Impact Melt” részek) is láthatók. A kőmeteoritokban gyakori ún. kondrumok pici milliméteres vagy kisebb üvegszerű ásványi gömböcskéi ritkán, de szemmel láthatók a törött részeken. Az említett színektől eltérő idegen színek nem jellemzőek, tehát idegen sárga, piros, zöld, lila, narancs szín az említett feketén, sötét barnán kívül.

A meteorit felszínét szabálytalanul elrendezett, vékony repedés hálózat boríthatja, ezek a felület lehűlésekor képződő ún. kontrakciós repedések. A repedésekben általában feltűnik a meteorit világosabb belső szerkezete. A nagyon ritkán előforduló szenes kondritok, a szén tartalom miatt belül sötétek, feketék, feketések lehetnek, apró, szabálytalan alakú fehér színű zárványokkal (CAI), a nagy többség azonban világos belső szerkezetű.

A kondrit meteorit alakja bármilyen lehet, de nagyon gyakori a szabálytalan alak, gömbölyded formákkal borítva, ritka a szép kúpos, orientált “klasszikus” meteorit alak. A meteoritot NAGYON RITKÁN határolja éles perem! Gázbuborékszerű ún. hólyagüregek viszont sohasem (hazai kohósalakoknál ez viszont gyakori, ez kizáró ok is egyben). A felület ún. elsődleges és/vagy másodlagos fekete színű olvadási kéregből áll.

Frissen hullott kondrit fekete olvadási kéreggel, kontrakciós repedésekkel
és becsapódáskori repedéssel
Cseljabinszk LL5 típusú kondrit. A fekete olvadási kéreg kissé “habos” jellegű, a törött felület világos belső szerkezetű, ami néhol vörösre oxidálódott. A meteorit akár 1-2 évet is eltölthetett nedves (eső,hó) környezetben!

Cseljabinszk LL5 típusú kondrit fekete olvadási kéreggel, a törött felületeken látható a világos belső szerkezet, enyhe vörös színű oxidációval.

A frissen hullott vasmeteoritok:

A ritka hullási események közé tartozó vasmeteorit felszínét, nagyon vékony fekete vagy kékes-fekete kéreg borítja. A vasmeteorit alakja szintén változatos, de a nagy többség gömbölyded, lekerekített élekkel, ujjbenyomódás-szerű gödrökkel, regmagliptekkel tagolt. A klasszikus repülés orientált kúpalak, folyásnyomos felszín szintén jellemző. Extrém ritka estekben átégett lyukak előfordulhatnak. A törött, olvadt felület sohasem világos, mint a kondritoknál, hanem megegyezik a meteorit sötét felszíni színével. Mivel nagyon sűrűek (magas a Fe-Ni fázis), ezért nehezek és erősen tapad rájuk a mágnes. Buborékok, belső zárvány üregek és üvegesedett olvadási kéreg nem látható. Tapintásuk kimondottam fémes jellegű és nagyon erősen tapad hozzájuk a mágnes.

Frissen hullott vasmeteorit lekerekített alakkal. Figyeljük meg, hogy az olvadási kéreg fekete, kékes színű. Jól látható a megolvadt, regmagliptes felszín.
Frissen hullott vasmeteorit. Hulláskor megolvadt alak, regmagliptekkel, a kopott éleken csillogó FeNi kibukkanással.
Tipikus repesz alakú vasmeteorit, repülés-orientált alakkal, éles folyásnyomokkal, fekete, kékes színű kéreggel. Hulláskor éles élek keletkeztek, de az orientáció alapján látszik a jellegzetes meteorit alak.

Házilag elvégezhető tesztek – meteoritikus eredet igazolására:

Az alábbiakban ismertetett tesztek nem pótolják a modern műszeres mérési eljárásokat, de segítenek abban, hogy igen nagy valószínűséggel kiszűrjük a meteoritnak gondolt mintáinkat a részletesebb vizsgálatok előtt. A professzionális szakemberektől, kutatóktól nem várható el, hogy minden, általunk meteoritnak gondolt anyagot részletesen megvizsgáljanak. Aki ragaszkodik az űrbéli eredetűnek gondolt anyagának részletesebb laborvizsgálatához annak ezt magának kell finanszíroznia. Hazánkban viszonylag kevés helyen foglalkoznak ilyennel, külföldön, elsősorban az USA-ban rutinszerű az ilyen eljárás, melynek költségei általában a több száz vagy ezer USD felett vannak. Az alábbiakban leírt sorrendben elvégzett vizsgálatokkal tapasztalatom szerint 90 % fölé tornázhatjuk a bizonyosságot, hogy valódi meteoritot tartunk a kezünkben.


1. lépés: A meteorit alakjának, külső jegyeinek vizsgálata

Mint a fentiekben láthattuk a szemtanús és a normál találású meteoritokra sajátságos külső jellemző. A lekerekített élek, regmagliptek, folyásnyomok, orientált alak, a külső felület színe, a törött felületek színe, szerkezete a fémszeplők, kondrumok – gömbcseppecskék – jelenléte, stb. kellő gyakorlat után segítik a meghatározást. A fentiekben ezt részletesen leírtam.

Kizáró tényezők a következők (eltérés lehetséges):

  • nem vonzza a mágnes (ld. még fentiek)

  • éles peremek, éles, határozott oxidáció (rozsda), éles és sűrű kráteresedés a felszínen, földi anyagok, szennyezések a minta felszínén (kőzetek, beton, fehér szilikátok, stb.)

  • gázzárványok, belső és külső üregek, buborékok jelenléte a felszínen és a belső törött felületeken, (ld még kohósalak)

  • egyenletes kitüremkedő buborékosodás a felszínen – pl. hematit

  • idegen színek jelenléte – kék, zöld, lila, piros, sárga, (ipari salak, emberi műtermék angolul ”man-made”)

  • összefüggő csillogó fémes párhuzamos szálak jelenléte – könnyűfém ötvözet

Ezen alaki és szerkezeti jellemzők összességét átlagembernek valóban nehéz felismerni, azonban a kizáró tényezők közül egy vagy több teljesülése esetén, a mintát nem érdemes tovább vizsgálni.

VALÓDI METEORITOK alaki jellemzői példákon bemutatva:

Klasszikus kúposan orientált meteorit alak, regmagliptekkel, folyásnyomokkal és fekete olvadási kéreggel. Middlesbrough L6 kondrit meteorit, 1881, Anglia.
Frissen hullott kondrit meteorit, regmagliptekkel, lekerekített élekkel, fekete olvadási kéreggel és kontrakciós repedésekkel.
Kontrasztos folyásnyomok egy kúposan orientált kondrit meteoriton.
Vékony fekete olvadási kéreg és kontrakciós repedések kondrit meteoriton (Bensour meteorit). Az élek lekerekítettek, belső törésnyomok világosak.
Vasmeteorit nagyméretű regmagliptekkel, felszíni mállási kráteresdéssel. Az élek lehetnek élesek is, de a regmagliptek hangsúlyosak!
Peremeken hangsúlyos “ajakrúzsozáshoz” hasonló lefolyásnyomok angolul “roll-over lipps”) és regmagliptek, melyek körbeölelik a meteorit peremét. Ritka de tipikus meteorit jellemző.
ÁLMETEORITOK alaki jellemzői példákon bemutatva:

ÁLMETEORITOK alaki jellemzői példákon bemutatva:

Álmeteorit – hólyagüregek a felszínen, néhol gömbölyded élekkel, de éles peremekkel határolva. Különös, idegen alak!
Álmeteorit – hólyagüregek a felszínen, néhol gömbölyded élekkel, de éles peremekkel határolva. Idegen alak és színek!
Álmeteorit – éles peremek, üvegesedett jellegű belső szerkezet. A mintán átmenő világos erek. Kalapáccsal könnyen pattintható felület.
Álmeteorit – rozsdás felszín, pici éles peremű üregekkel. A felületen idegen szerkezetű és színű (beton?) foltok láthatók. Nincsenek regmagliptek!
Álmeteorit – mangán ötvözet megtévesztő, regmaglipt szerű felszínnel. A minta belül fényes, maratva szerkezetet mutat, de nem mágneses! Oldalt üledékes rész látható, ez idegen a meteoritoktól. Éles perem körben!
Álmeteorit – magnetit, vonzza a mágnes! idegen felszíni világos rárakódás, regmagliptek hiánya jellemzi a legömbölyített formát. Kavicsszerű alak mindig gyanús!

2. lépés: Mágneses teszt

A meteoritok 99,9%-át vonzza az erős pl Neodímium 52 mágnes és a vas-nikkel tartalomtól függően ezen vonzó hatás minden esetben más és más. Mint említettük érdemes a mágnesünket pl. 30-50 cm hosszúságú cérnára felkötve belengetni a minta mellett 1-2 cm távolságra. A mágnes azonnal jelzi a meteoritvas jelenlétét. Vigyázat: acél, kohósalak, magnetit, ipari hulladék, bazalt, érc és vas tartalmú kőzet is vonzza a mágnest! A teszt tehát fontos de nem elégséges a megnyugtató azonosításhoz. Marsi, holdi meteoritokat alig-alig vonzza a mágnes, de ezek előfordulása pár ezrelékes csupán!


3. lépés: Karcpróba teszt

A mintával erősen megkarcoljuk egy fehér porcelán tányér vagy hasonló anyag fehér felületét és megvizsgáljuk, hogy az hagy-e maga után karcot és ha igen milyet és milyen színűt.

Jó a karcpróba, ha a minta egyáltalán nem vagy nagyon vékony karcot hagy maga után. A karc mindig akkor jó ha nagyon vékony vagy nincs és az sosem fekete színű. Az erősen oxidálódott meteorit barnás vagy barnás vörös nagyon vékony karcot hagyhat a felületen. Eltérések lehetségesek, az oxidáció jellege és mértéke után. Győződjünk meg, hogy maga a meteorit kérge hagyta maga után a nyomot vagy esetleg a földi málláskor (pl. föld alól előkerült minta!) a felületre tapadt földi eredetű ásvány vagy kőzet darab.

A karcpróba rossz ha széles fekete vagy vörös nyomot hagy a minta, előbbi magnetit, utóbbi hematit jelenlétére utal.


4. lépés: A minta sűrűségének megmérése

A legfontosabb próbáink egyike! A meteoritok általában sűrűbbek (eltérés persze itt is van) mint a rájuk hasonlító természetes földi kőzetek, ásványok vagy a gyakoribb “man made”, emberi alkotta minták. Természetesen itt is vannak kivételek, de első körös behatárolásra a sűrűségmérés jó támpontot adhat. A mintánk sűrűségét megmérve az alábbi táblázat segít behatárolni, mely meteorit típusba tartozhat az. A kőmeteoritok gyakorisága miatt elsőre mindig kondritot gyanítunk.

a táblázat adatai tájékoztató jellegűek, eltérések lehetségesek.

Tájékoztatásképpen megadjuk a hozzánk és hazai intézetekbe beküldött gyakoribb álmeteoritok (földi anyagok) sűrűségadatait. Természetesen eltérés itt is lehetséges, az adott “ál” minta különböző összetételi előfordulása miatt.

A sűrűségmérést elég tizedesjegy pontosságúra elvégezni. A méréshez tized gr pontosságú mérleg szükséges. A mérés és a számítás menete az alábbi ábrán látható:


5. lépés: A Betekintő ablak (angolul “cutting window”) készítése

Nagy gyakorlatot és speciális vágószerszámokat igényel. Kőmeteoritoknál ehhez gyémánt vágótárcsát célszerű használni, ha lehet vízhűtéssel ellátva. Vasmeteorithoz fémfűrész vagy szintén hűtött abrazív (vágás közben elkopó) vágókorong szükséges, utóbbi esetben gondoskodni kell a hűtésről, mert a minta megéghet (ez utóbbi hűtés a legnehezebb feladat házi körülmények között). Különös óvatosságot igényel az elektromos vágók használata vízhűtéssel összekötve!

Az eljárás lényege, hogy a minta mennyiségétől függően – azt minél kevésbé roncsolva – sík bevágást készítünk a mintán pl. egy jól kiálló nagyobb felületű sarokrészen. Ennek felülete néhány cm2,  olyan hogy azt kézi nagyítóval később könnyen tudjuk vizsgálni (javaslat kb 5-100 gr mintánál 1-2 cm2, egyéb esetekben 5-10 cm2 felület jó lesz). A vágás után a felületet síkra kell csiszolni, a hullámos gátolhatja pl a jó minőségű makrofoto készítését. A felületet minimum 300-as finomságú csiszolópapírral (gyémánt vagy abrazív) finomra kell kidolgozni, ideális a polírozott felület minőség. Kőmeteoritnál ez elegendő lehet, vasnál 800-1500-asre törekedjünk, ez ugye már polír finomság.

  • Kondritnál csillogó ezüstös fémszeplőket kell látnunk elszórva, plusz apró ellipsziseket, köröket.

  • Szenes kondritnál néhány mm-es apró pici ellipsziseket, köröket, esetleg fehér alaktalan foltokat.

  • Akondrit (nagyon ritka típus!) felismeréséhez szakember szükséges!

  • Vasmeteoritnál: egybefüggő ezüstösen csillogó fémes felület a jó. Zárvány üreg, belső repedés vagy azok hálózata kizáró ok! Vasmeteoritokat még tovább lehet vizsgálni: Különleges savas keverékben megmaratva az okta-edrites meteoritok a nevezetes fémesen csillogó Widmanstätten-Thomson-mintát mutatják, ami egymást 60°-ban keresztező, párhuzamos vonalak jellegzetes hálózata és csak vasmeteoritra jellemző!. A többi típus ettől eltérően maratás után nem mutat semmilyen szerkezetet vagy apró pici egymással párhuzamos vonalak rendszerét mutatja (ez utóbbi nagyon ritka!). A savval való maratás rendkívüli gyakorlatot, tapasztalatot és szaktudást igényel, ezt csak szakember tudja elvégezni, ne kísérletezzünk házilagosan vele.

Vigyázat: a hazánkban előforduló ipari könnyűfémötvözetek (pl mangán tartalmú ötvözetek) maratás után szintén mutathatnak a Widmanstätten-Thomson-mintától eltérő mintázatot, de azt a sav gyorsan bebarnítja! Acélt savval maratva annak felszíne nagyon gyorsan beszürkül. Ha pl. becsapódott lövedék repeszt, lövedék magot maratunk az szintén beszürkül és a becsapódáskor megzömült anyag szabálytalan határvonalai jellemzően hullámos mintával kirajzolódnak.

Kondrit meteorit vágott, csiszolt “betekintő ablaka”. Jól láthatók
a fekete alapmátrix fémszeplői.
Pultusk H5 kondrit meteorit vágott szelete a csillogó fémszeplőkkel és rozsdaszínű
kerek kondrumokkal.
L 3 típusú kondrit meteorit határozott gömbölyű kerek peremű kondrumokkal. Könnyen felismerhető szerkezet, csak meteoritokra jellemző a minta!
Vasmeteorit jellegzetes un Widmanstätten-Thomson mintája. Egymást 60°-ban keresztező ún okta-edrit lamellák. Csak vasmeteoritra jellemző minta.
Álmeteorit – megvágott megcsiszolt felület. Nyílt üregek, gázbuborékok nem lehetnek valódi meteoritban. Ez a felület maratva gyorsan sötétre szürkül!
Álmeteorit – Mangán ötvözet megtévesztő maratott felületű mintája. A mintázat nem csillogóan ezüstös és fémszínű, mint vasmeteorit esetén és annak szerkezete eltér a Widmanstätten-Thomson mintától!

6 lépés: Nikkel teszt

Mint említettem a meteoritok mindegyike tartalmaz valamilyen mértékben nikkelt (ld. első részek). A földi kéreg átlagosan 0,005% Ni-t tartalmaz, de ettől eltérő esetekről is tudunk. Illetve a kohászati iparág is használ nikkelt előszeretettel ötvözőként, így az ember által készített fémtartalmú mintákban gyakorta előfordulhat. Ezért ez a teszt nem mérvadó, csupán segítő jellegű. A Ni hiánya viszont a legtöbb esetben kizáró tényező!

A teszt során a porított mintánkat sósavban feloldva reagáltatjuk, dimetil-glixommal és figyeljük a folyadék elszíneződését. Minél nagyobb a nikkel tartalom annál jobban skarlátvörös a folyadék. Ni hiánya esetén a folyadékunk átlátszó vagy matt, de semmiképpen nem vörös. A kohósalak produkálhat vörösödést, de az elhalványul pár perc múlva.

A teszt elvégzéséhez speciális reagens szett szükséges, mely külföldről, internetről beszerezhető. De bízzuk ezt szakemberre inkább.

Nikkel teszt pozitív (vörös szín) és negatív (nem vörös!, de lehet más is) esetben

A tesztek összegzése:

Ha mind az 5 tesztünk pozitív eredményt adott, akkor a mintáról magáról, a betekintő ablakról készítsünk jó minőségű, színhelyes, éles, kontrasztos és  jól látható, részletes fotókat, esetleg egy vonalzót is mellé téve a képen.

További vizsgálatokat házilagosan már nem nagyon tudunk elvégezni. A továbblépéshez szakértelem, kellő műszerezettség és gyakorlat szükséges.

Ha mintánk kiállta a fenti lépéseket egyértelműen, akkor bátran fordulhatunk az eredményekkel, fotóinkkal szakemberhez, a további laborvizsgálatok érdekében. Sajnos a hazai intézmények egy jó része nem rendelkezik kellő gyakorlattal, tapasztalattal és kapacitással meteorit azonosításban, ekkor érdemes tehát hozzám fordulni aki napi szinten foglalkozik meteorit azonosítással és az ehhez kapcsolódó kutatással.


Javaslom tehát:

  • ha a fenti tesztek után bízik abban, hogy mintája valódi meteorit

  • akkor a további vizsgálatok érdekében vegye fel velem a kapcsolatot itt.


Meteorit keresési stratégiák friss hullású meteorit esetén:

Minden meteorpálya-számítás hibával terhelt, ezért fontos, hogy minél pontosabban kimért pálya adataink legyenek. ideális lenne – ha rendelkezésre áll – meteorológiai doppler-radar térképek, mert ott a konkrétan lehulló darabokat látjuk (ez hazánkban még nem elérhető lehetőség). Néhány km2-es keresési terület vagy még kisebb lenne az ideális, de a tűzgömb megfigyelő hálózat ma még hazánkban nem teljes és nem sikerül mindig jó állásszögű és több kamera által is rögzített meteornyomhoz jutni. Ezért a nagyméretű, akár több tíz km2-es keresési terület évekre való keresési munkát adhat. Amerikai tapasztalt meteorit vadászok leírása alapján átlagosan és kb. 65 óra szükséges egy embernek 1 db meteorit megtalálására, mások szerint ez 500 munkaóra is lehet! Mindez akkor érvényes ha megfelelően pontos pályaszámításaink és kellő gyakorlatunk van meteorit keresésben. Ne kedvetlenedjünk el elsőre ha nem találunk meteoritot, kitartó, elhívatott keresés szükséges a megtalálásukhoz, ami kevés esetben jár sikerrel. De ha nem próbáljuk meg, nem is adunk esélyt a megtalálásukra!

Minden esetben ismerni kell a meteorpálya haladási irányának térképre vetített vonalát és a hibahatárral megadott hullási négyszöget vagy ellipszist, kört, stb. Ideális esetben 67 %-os vagy jobb valószínűséggel rendelkező hullási területet érdemes átnézni. Nagyobb terület vagy rosszabb hibájú behatárolás esetén, mindig a terepi viszonyok döntenek arról, hogy mintavétel szerűen hol végezzük a keresést.

Mégegyszer tehát: friss hullású meteoritot az előbbiekben felsorolt meteorit jellemzők alapján szabad szemmel keresünk. A hullott meteoritok jellemzően a föld felszínén találhatók és könnyen észrevehetők a környezettől elütő fekete színük miatt. Több év elteltével vagy pl intenzív mezőgazdasági művelés esetén a meteorit a földfelszín, avar, fű, stb alá kerülhet, ekkor már csak a fémkereső vagy a véletlen segíthet, ezért kell sietnünk a helyszínre érni hullás gyanú esetén.


Érdemes a következők szerint területet választani és keresni:

  • a keresést szakember, lehetőleg hozzáértő meteoritikus, geológus, gyakorlott gyűjtő vezesse. A többieknek célszerű rövid összefoglalót tartani, hogy mit keresünk, hogyan és mire kell figyelni közben,

  • vigyünk magunkkal erős mágnest, térképeket, tollat, alkoholos tollat, papírt, erős fényű zseblámpát, mobiltelefont esetleg adó-vevőt, nylon zacskókat, 2000 gr-ig (0,1 gr pontos) ,érő kézi mérleget, fényképezőgépet, zsebkést, napszemüveget, esőkabátot, hosszú illetve rövid nadrágot, megfelelő ruházatot, élelmet, ivóvizet,

  • a sötét repülés megkezdési pontja és a földet érés pontját összekötő szakasz földi vetületének szűkebb környéke preferált, érdemes meteor haladási irány szerint hátulról előre kutatni,

  • kedvező domborzati jellemzőjű (laposabb, sík mezők, művelt területek) területet válasszunk, kerülendő az erdős, sziklás nehezen megközelíthető, kereshető terület, vízfelületek, mocsaras vidék, stb), magas fű esetén, összenőtt, sűrűbb cserjés, bokros esetén, sekély víznél használjunk FeNi jelére hangolt fémkeresőt, melynek használatához szerezzünk engedélyt (hazánkban pl),

  • lakott terület esetén az eseményről, talált darabokról kérdezősködés, plakát ragasztás, közintézmények, erdészek, hivatalos szervek megkeresése rendkívül hasznosnak bizonyulhat,

  • létszámtól függően csoportokra bontva keressünk, a csoportoknak a helyszínen jól behatárolható területeket válasszunk, a csoportok legyenek kapcsolatban egymással,

  • mindig meteorit szórás mezőt feltételezve keressünk, ha egy példányt megtaláltunk, a szórás mező már behatárolható, úgy hogy a földet éréstől visszafelé haladva találhatóak az egyre kisebb méretű példányok,minden átnézendő területet GPS-el jelöljünk ki és a már átnézett területek GPS koordinátái által körülhatárolt területet jelöljünk meg térképünkön,

  • minden talált meteoritot dokumentálni kell elmozdítása előtt. Készítsünk fotót a meteoritról és mellette a látható GPS pozíciót mutató eszközről, több meteorit esetén a minta számát mutató cetliről. A meteorit tömegét ha lehet a helyszínen mérjük meg és a minta számának megfelelően feliratozott, számozott lezárható nylon tasakba tegyük el.

  • nagy méretű meteorit esetén különösen fontos a jól dokumentált, fotózott környék, elszállításához kérjünk segítséget. Dokumentált (felirat, tasak, fotó, GPS) talajmintát is vegyünk a meteorit közvetlen közeléből. Kráter, gödör, üreg stb estén mérjük le annak átmérő adatait és legnagyobb mélységét cm-ben, ne bolygassuk meg a krátert!

  • nagyobb területeket, csoport esetén érdemes az un pásztázó kereséssel átnézni, mindig legyen egy hozzáértő csoportvezető. A pásztázó keresést a résztvevők létszámától függően csatárláncban végezzük egymás mellett állva, kb 1,5-3 m belátható egyszerre egy személynek a terepen! Ez utóbbi változhat a tereptől függően. Folyamatosan vonalban haladunk a terepi adottságoktól függően oda és vissza. Gyanús minta esetén megállunk és jelezzük a csoportvezetőnek a találatot. Csak ő megy oda megnézni a mintát, a többiek maradnak a helyükön. Elvégezzük a dokumentálást és haladunk tovább. Használhatunk jól látható jelzőzászlókat is a minták helyének megjelölésére (ez gyorsabb haladást tesz lehetővé). A csoportnál jó ha van legalább 1 db fémkereső:

  • egyedül vagy párban keresve szintén a fentiek érvényesek. Cél, hogy ne hagyjunk átnézetlen területet magunk mögött. Minden ellenőrzött területet jegyezzünk fel és juttassuk el azt a keresést koordináló személyhez, hogy ne legyen ugyanaz a rész többször átnézve.

  • létezik egy másfajta keresési eljárás is, amikor csigavonalban haladunk egy pontból kiindulva kifelé, vagy már megtalált meteoritot centrumnak kijelölve indulunk újabb csigavonalas keresésre.

A pásztázó, csatárláncos keresés művelete

Kié a megtalált meteorit?

Hazánkban külön jogszabály nem foglalkozik a megtalált meteoritok tulajdonjogával. Én azt valószínűsítem, hogy egy ilyen jellegű vitás, jogi eljárásban valószínűleg a következő állítás állná meg a helyét: azé a meteorit akinek a földjére esett vagy ott találták meg. Kivéve ha bizonyítható, hogy 1711 előtt már a földben volt, akkor ugyanis az államé lásd 2001. évi LXIV. törvény, a kulturális örökség védelméről.

Soha ne feledjük a meteorit elsősorban a tudományos kutatás tárgya, másodsorban gyűjtői, esztétikai és pénzben kifejezhető érték! A meteoritnak elsőként a szakembereknél van a helye, azonban ha rendelkezésre áll belőle a tudomány számára nélkülözhető mennyiség, akkor a múzeumokban, magángyűjteményekben, kiállítóhelyeken is helye van.

Felhívom a figyelmet, hogy a magánúton megtalált és hivatalosan nem azonosított, leírt, elemzett (klasszifikált) meteorit értéke csekély! A hivatalos klasszifikációt szakember végzi és ekkortól kerülhet a meteoritokat nyilvántartó adatbázisba, a “Meteoritical Bulletin”-be. Az eljárás drága, időigényes és nagy gyakorlatot kíván, bízza ezt ránk.


A kereséshez, azonosításhoz sok sikert kíván!

Kereszty Zsolt
terepi és azonosítási meteorit szakértő
IMCA, Meteoritical Society

Forrás: crbobs.hu

Meteoritkráter Expedíció – 2021-ben a svéd Mien romkráterhez és krátertavához

A koronavírus-járvány okán a Meteoritkráter Expedíció csapata a korábban tervezettel ellentétben a jövő nyáron kel ismételten útra! A 2021-es esztendő kiemelt célpontja a 121 millió éve kőmeteorit formálta, 9 km átmérőjű, tóval fedett svéd Mien romkráter.

A korábban felkeresett lengyel Morasko-krátermezőhöz, majd Ries és Steinheim ikerkráterekhez hasonlóan a svédországi expedíció is az asztroblém felszínalaktani formáit, impaktitjait, – környezettudományi szemmel – talajviszonyait, hidrológiáját, állat- és növényvilágát, természetvédelmét, kultúrtörténetét teszi vizsgálat tárgyává. Mindezt kiegészíti az az ismeretterjesztő jelleg, amelynek során a természettudományok iránt fogékony nagyközönség figyelmét felhívja a meteoritika, a geológia, a geográfia és a környezettudomány aktuális kérdéseire és érdekességéire.

A Meteoritkráter Expedíció kibővített létszámú 2021-es svédországi útjának társszervezője a Bakonyi Csillagászati Egyesület. (Folyamatosan bővülő) szakmai, támogató és médiapartnere a Magyar Meteoritikai Társaság, a WJLF Környezetbiztonsági Tanszék, a Gothard Jenő Csillagászati Egyesület, az UtazniJó Utazási Iroda, Wollner Tibor, a Galileo Webcast, az Élet és Tudomány folyóirat, az Origo Tudomány rovat, a Planetology.hu honlap, a Gravitáció és a Rezsabek Nándor ScienceBlog.

A Košice meteorit

Szerző: Kereszty Zsolt
MMT, MCsE, MetSoc, IMCA, IMO
2020. február 28.

Előzmények

2010. február 28.-a vasárnapra esett. Kelet-közép Európában a szokásos tél végi felhős időjárás uralkodott, a Kassától nyugatra eső erdőket, dombokat, völgyeket hó fedte, de egyébként száraz idő volt. Az emberek jó része, mint minden vasárnap este, már lefeküdt vagy lefekvéshez készülődött, a kitartóbbak az USA-Kanada világbajnoki hokidöntő hosszabbítását nézték (2:3 lett…). Míg nem 22:24:45 UT-kor (23:24:45 KözEi) a teliholdnál jóval fényesebb robbanó tűzgömb szelte át az éjszakai égboltot.

A kassai tűzgömb biztonsági kamerás felvételei, Telkiből és Örkényből – ez a két legjobb videofelvétel a jelenségről

A nappali világosságot okozó, erős fényű bolidát Magyarországról, Szlovákiából és Lengyelországból is látták, előbbi két országban a felvillanás után pár perccel megdöbbentően hangos hangrobbanást és egyéb elektrofónikus hangokat hallottak. A döbbent szemtanúk több kisebb és egy nagyobb zöldes színű robbanást említettek, de károkról, sérülésekről és különösen becsapódó meteoritokról a reggeli TV-s hírek sem szóltak. Amatőr-csillagászati és meteoros szakmai körökben hamar híre ment a látványos tűzgömbnek, de mivel felhős volt az ég a magyar és külföldi meteorkamerás hálózatok nem detektálták azt, fényképet, video felvételt ekkor még senki nem látott. Szakmai körökben másnap megindult az adatgyűjtés, hogy ki, hol, mit látott, kinek lehetnek felvételei amiről többet lehetne megtudni. Az esemény után néhány napon belül komoly cseh-magyar-szlovák csillagászati együttműködés bontakozott ki a kamerás felvételek megtalálására, a tűzgömb pályájának meghatározására és az esetleg földre hullott meteoritok hullási zónájának kiszámítására. A Cseh Tudományos Akadémia részéről a tűzgömb pályaszámoló és meteorit hullásokban szakértő Jiří Borovička, Pavel Spurný, a Szlovák Akadémia (SAS) részéről Juraj Tóth (Comenius Egyetem, Pozsony) és kollégái, magyar részről az MCSE-től többen, így Igaz Antal, Sárneczky Krisztián, Kiss László a KFKI-ból Vizi Pál és mások vettek részt a munkában. Kalandos módon és szisztematikus kutatással, de végül 3 magyar és egy szlovák biztonsági kamera felvételét sikerült megszerezni, amin részben vagy teljesen látszott a jelenség. Ezekből a Budapest melletti Telki (Meszlényi Tamás kamerája, 5 fr/sec, 13 db használható frame) és Örkény (Fazzi Daniella és Vass Gábor kamerája, 5 fr/sec és 6 db használható frame) illetve egy budapesti (Asztalos István kamerája, 12,5 fr/sec, 50 db használható frame) kamera felvételeit lehetett kiértékelni. A szemtanúk beszámolói és a videók alapján a leggyorsabb – de nem pontos – ún. sík-összemetszéses módszerrel többen is meghatározták (Vizi március első napjaiban!), hogy ha hullott is meteorit akkor azt Szlovákiában kb. Kassától délre, nyugatra kell keresni. Közben a cseh tűzgömb pálya specialista Borovička és társai kiértékelték a videókat és néhány km pontos hullási szórásmező térképet számítottak (március 11.), melyet megosztottak szlovák kollégáikkal. Ezt azért fontos kiemelni, mert lényegében magyar biztonsági kamerák felvételei alapján sikerült hullási zónát behatárolni. Azt is lehetett tudni, hogy a meteortest kellően mélyre érkezett ahhoz, hogy számottevő valószínűséggel meteoritokat találhassanak a kalkulált pozíció körzetében. A problémát már csak az okozta, hogy a Kassa városától kissé észak-nyugatra eső szórásmezőben, Vyšný Klátov (Felsőtőkés) és Nižný Klátov (Alsótőkés) falvak környezetét a keresést gátló jelentős hó borította, ezért meg kellett várni annak elolvadását.

A meteoritok keresése

A helyszínre J. Tóth, L. Kornoš szlovák kutatók érkeztek elsőként, március 12.-én, 30 interjút készítve a helyi szemtanúkkal, lakosokkal, bár a hó miatt még nem kerestek ekkor. A melegedő időjárás, olvadás hatására végül március 20.-án indult meg a helyszíni keresés J. Svoreň és Tóth vezetésével. A 8 tagú csatárláncban felvonuló csapat vezetője Tóth, az autó parkolóból való indulástól számított 40. percben találta meg az első meteorit példányt, ami kiugróan gyorsnak számít. Azon a napon, 100 m-re az elsőtől még egy másikat találtak (81,3 gr). A második keresési napon, 21.-én egy másik területet néztek át – „Alpinka resort” – itt 11 példányt találtak (2,75 – 106,1 gr). A következő napokban a kereső csapat kiegészült, további szlovák, cseh kutatókkal, egyetemistákal, önkéntes keresőkkel, illetve az MCSE-től 4 fővel. Kubovics Imre professzor (ELTE), Vizivel és jómagam is járt a helyszínen, többször is. Március 25.-ig a különböző expedíciók 61 db meteoritot találtak, később október. 28-ig még 17-et, a 0,57 gr-tól egészen a 2,1674 kg-ig, összeségében 4,3 kg-ot. A szabad szemmel folyó keresés átlagos találati aránya 2,6 darab/személyre adódott, egy darab meteoritot pedig átlag 10 óra alatt talált egy fő, ami kiemelkedően jónak számít.

J. Tóth végül március végén nemzetközi sajtótájékoztatón mutatta be az elsődleges vizsgálatok szerinti kondrit meteoritokat és számolt be a három ország kutatóinak értékes eredményeiről.

A szlovák és cseh kutatók kereső csapata (fekvő sorban piros kabátban az expedíció vezetője, Dr. Juraj Tóth)
jobbra az első megtalált – 17,3 gr tömegű – meteorit 2010. március 20-án

Kissé bonyolította a helyzetet, hogy Szlovákiában az ottani törvény értelmében, minden feltalált meteorit a Szlovák Államé, keresni is csak akadémiai, intézeti engedéllyel lehet. Manapság ez a helyzet minden országban más és más, nálunk pl. nincs ilyen törvény, Szlovákia viszont talán a legszigorúbbak közé tartozik és ilyen csak néhány van a világon. Hogy ez jó-e vagy sem azt nem tisztem megítélni, inkább ezt az időre és a gyakorlatra bíznám, annyi azért mondható, hogy minden törvény annyira jó amennyit betartanak belőle. Hogy szomszédunknál túlságosan nem működhet minden e téren „flottul”, azt talán az a tény is mutatja, hogy a hullás legnagyobb tömegű, 2,37 kg-os darabját Németországból kellett visszahozniuk 2012-ben. Így nem lehet csodálkozni, hogy 2010. március-áprilisában megjelentek a felsőtőkési erdőkben, mezőkön a professzionális és kalandvágyó meteorit-vadászok, privát keresők, hiszen a meteorit, különösen a ritkának számító európai szemtanús hullású meteorit, nem csak tudományos, hanem pénzben kifejezhető értékkel is bír és minden gyűjteményben szívesen látott darab. Ezt követően hamarosan megjelentek az első eladó kassai példányok a világ meteorit piacán. Amik aztán hamar eljutottak külföldi – és szlovák – magángyűjtőkhöz, intézetekhez, akkoriban a kassai hullás bizony szakmai körökben „slágercikknek” számított. A szlovák kutatók a kereskedelmi célra értékesített példányok piacon elérhető GPS és tömeg adatai alapján, tovább 140 meteorittal bővítették az adatbázisukat, ami így már 218 db-ra és 11,3 kg-ra nőtt. Mindent természetesen nem tudtak katalogizálni, csak én magam, a világ jelentősebb meteorit kiállításain, vásárain jelentős kassai mintákat, akár nagy méretű (70 dekás) példányokat is láttam régebben. Az USA-ba került egy olyan, párját ritkító példány is, ami egy korhadt fába csapódott és a megtaláló kivágta a kb. 1 m hosszú fahasábot benne a meteorittal, ez talán a 2. ilyen in-situ példány a világon, amikor egy fában állt meg a meteorit. Ezek után nem lehet csodálkozni, hogy honfitársainkhoz, hazai intézetekhez is eljutottak kassai kondritok, akár összesen 1 kg is.

71 gr-os Košice meteorit ami egy korhadt fában állt meg, a fát elvágták és eladták a meteorittal együtt (J. Utas, USA)
A szerző a Košice szórásmezőben

Mint minden ilyen szintű törvényi retorzió, – mint pl. a szlovák meteorit tulajdonlás – előbb utóbb elévül, ami ebben az esetben 2020. február-márciusától fog megtörténni, tehát ezután Szlovákiában sem büntethető senki a kassai meteoritok birtoklása miatt. Ismerve a hivatalos keretek közt feltalált és a piacon megjelent meteoritokat, valamilyen hibahatárral de megbecsülhető a hullás reális tömege, amit én kb. 300-400 db-ra és 15-20 kg-ra tennék. Ez jelentős darabszámú és tömegű hullásnak számít, talán 1-2 évente van ilyen az egész világon! És azt sem szabad elfelejteni, hogy a szűkebb régiót tekintve hazánkban 1944-ben (Mike L6 kondrit) és a jelenlegi szlovák határokon belül pedig 1895-ben (Nagy-Borové L5 kondrit) volt utoljára szemtanús meteorit hullás.

A legnagyobb Košice meteorit példányok, fentről lefelé 2,36 kg és 2,17 kg és a sajtótájékoztatóan bemutatott minták 2010. márciusában

A meteorithullás szórásmezője

A precízen dokumentált találási koordináták, tömegek alapján felrajzolható az egyes meteoritok hullási térképe, azaz a szórásmező. A szakirodalom szerint és a valóságban is ez egy jól körülhatárolt ellipszisen alakú terület, így van ez ennél a meteoritnál is. J. Borovička számításai szerint a Felsőtőkés mellett előre várt szórásmező mérete 5 x 3 km, amivel nagyon jól összecseng, hogy a 218 db meteorit 90%-át valójában egy 2,6×1,2 km méretű ellipszisben találták. Ez azt mutatja, hogy a számítások hiába rendelkeztek nagyon pontatlan és kevés számú bemenő adattal, a cseh kutató mégis nagyon pontosan tudta megadni a várható lehullási zónát. Hogy tényleg ennyire jó a modell vagy épp szerencséjük volt, éppen a negatív és pozitív irányú hibák oltották ki egymást vagy épp más történt azt nem tudjuk. Mindenesetre nagyon ritka, hogy minden így összevágjon.

A kimért szórásmező térképén jól látható, hogy a két fődarab egymástól messze a szórásmező belsejében található

A meteorit szórásmezejének mintázatát részletesebben megvizsgálva számos furcsaságot vehetünk észre, megfigyelhető, hogy a 2,37 és 2,17 kg-os két legnagyobb meteorit nem a haladási irány szerint leginkább előrébb helyezkedik el, hanem hátrébb és egymástól 1,4 km-re, ami rendkívül szokatlan. Ugyanis a legnagyobb darabok sötétrepülés közben a tehetetlenségüknél fogva inkább előre felé repülnek, ráadásul a magaslégköri szelek sem tudják annyira torzítani hullási pályájukat, mint a kisebb daraboknál. A szórásmező ellipszisének nagytengelye mentén hosszában és ahhoz közel a kisebb, 10 gr és a közepes 10-100 gr nagyságú meteoritok nagyjából egyenletesen szóródtak. Ez megint eltér a megszokottól, ugyanis a kisebbekből egyre többet kellene találnunk a haladási irány szerint egyre hátrébb.

A meteorit számított és kimért szórásmezője, széllel számolva és anélkül, illetve a 3D-s tömeg eloszlása, jól megfigyelhető a két csoport

Ha a megtalált a meteoritok tömegét a földrajzi koordináták szerint 3 dimenzióban ábrázoljuk, akkor észrevehető, hogy a két fődarab hoz tartozóan, két jól illeszkedő egyenletes tömegeloszlású meteorit koncentráció tartozik. Ez teljesen eltér a jellegzetes szórásmező térképektől. Az említett anomáliákat feltehetően a bolida különös fragmentációja okozza, amit úgy tűnik ki is mértek a kutatók (ld. később). Emellett megadom az – ismert, publikált – legnagyobb példányok tömegadatait gr-ban: 2360, 2167, 740, 316, 246, 209.

A meteorit típusa és összetétele

A megtalált meteoritpéldányokat elsőként mindjárt két kutatói csapat is vizsgálta, egyikük Daniel Ozdín (Comenius Egyetem, Pozsony), másikuk a neves magyar kutató Kubovics Imre (ELTE, Bp.), mindegyiküket van szerencsém ismerni és vizsgálatokról tőlük első kézből tájékozódni.

A kézbe vett meteoritokról szakértő szem, már a helyszínen megállapíthatta, hogy bizony a gyakori kondrit típushoz tartozik, mely a kőmeteoritok legelterjedtebb fajtája. A matt, szemcsésen csillogó, fekete olvadási- ún. kőzetüveg kéreg és a hozzá tartozó jelentős, de a vasmeteoritokhoz képest jóval kisebb tömeg is tipikus kondrit jellemző. A törött felületek szilikátokra jellemző világosszürke színe, a lerepedt részek vékony fekete vonalhálózata szintén kondritos tulajdonság. A keresésnél mindig zsebben lévő mágnes is segíthetett, hiszen a kondrit vasnikkel tartalma miatt vonzódik az erős mágneshez. Így mire a laborba ért a minta, már csak a típus, petrológiai osztály és a finom részletek meghatározása maradt hátra.

A kutatók elkészítették a mikroszkóp tárgylemezre ragasztott polírozott felületű vékonycsiszolati mintákat, amit elsőként polarizációs mikroszkóppal vizsgáltak. Megerősítették, hogy kondrit meteoritról van szó, kissé elmosódott határvonalú de valódi kondrumokat láttak benne, a petrológiai osztály 5-s lett. A fémtartalom, Fe 12,46 w%, az átlagos kondrum és a FeNi szemcseméret alapján, pedig H kondrit, azaz a hullott meteorit a gyakori H5 típusú kondrit. Ez adja az ismert hullások egyik legnagyobb részét, H típus ~33,8%, L típus 37%, a két leggyakoribb pedig az L6 és utána a H5.

Saját Košice meteorit vékonycsiszolatom keresztpolarizált fényben készült felvétele, megfigyelhető az erős termális metamorfózis (800-1000 C fok) és az újrakristályosodás

A meteorit makroszerkezete alapvetően breccsás, benne apró finom, fekete olvadékzsebekkel, sokkolt erekkel. Ez mindig azt vetíti előre, hogy a meteorit anyaga akár több impakt (becsapódásos) jellegű ütközést szenvedett el korábban a Világűrben. A kimért sokkoltsági fok az 1-től 6-ig tartó Stöffler-féle skálán közepes, azaz S3 lett. A mállási fokozat (angolul weathering), mivel friss hullású meteoritról van szó, a 0-5-s skálán természetesen az egyáltalán nem mállott, azaz W0 fokozatú lett. A hullás után begyűjtött példányok szinte egyáltalán nem oxidálódtak, a később 5-10 év múlva begyűjtöttek pedig már erős mállást mutatnak belül, de olvadási kérgük így is fekete. Visszatérve az Ozdín-ék által kimért közepes fokú sokkoltságra, a jellegzetes monomikt regolit breccsa szerkezet tudnivalólag gyengíti az anyagot, egy tömöttebb, homogénebb kondrit állaghoz képest. Ez lehet az oka a Borovička-ék által kimért 57 km magasságban történt „könnyed” fragmentációra, a mérések szerint ugyanis a meteortest anyaga már 0,09 MPa dinamikus stressz hatására szétesett.

Košice meteorit vékonycsiszolatomról készült keresztpolarizált és visszavert fényű mikroszkópos felvételek balra: olivin kondrum részlet, jobbra: fémes FeNi szemcsék az opak ásványok közé ágyazódva (tipikus kondrit)

19 db meteoritot nem roncsolásos, besugárzásos módszerrel is megvizsgáltak és a Co60 és Al26 izotópok aránya azt mutatta, hogy az eredeti meteoroid 100 cm +/- 10 cm méretű lehetett, kicsit más de nem túl eltérő eredményt adott a dinamikus lassulásból származó számítás, ami ez esetben 123 cm. A He, Ne, Ar semleges gázok vizsgálatára alapozva a meteorit kozmikus kitettségi ideje – CRE – 5-7 millió év, ami jól korrelál a H kondritok ilyen adatával. A CRE – Cosmic Ray Exposure – az az időtartam amit a meteoroid az eredeti forráségitestjéből kiszakadva a Világűrben tölt a lehullásáig.

A meteorit kimért geokémiai összetétele pedig a következő: főként olivin (Fa18.6) és alacsony Ca-tartalmú piroxén (Fs16.6), FeNi és szulfidok, de jelen van kisebb mennyiségben diopszid (Fs6Wo46), augit (Fs8-15 Wo26-43), albit (Ab82An12Or6), kromit, klorapatit, merrillit, troilit, kamacit, ténit és tetra-ténit.

Érdekesség, hogy a hullott darabok között relatív gyakori volt az olyan felületű amit csak részben fedett fekete olvadási kéreg, ezt közelebbről megvizsgálva kiderült, hogy nem a fragmentációkor és nem a levegőben keletkezett friss törés, hanem más folyamat eredménye. A kutatók úgy gondolják, hogy ezek a minták vagy a meteortest mélyéből származnak, szakadtak fel és/vagy annyira alacsony magasságra jöttek le az utolsó fragmentálódáskor, amikor már leállt az abláció és nem tudott olvadt réteg rádermedni a test felszínére.

A részletes kutatási eredményeket a szlovák kutatók később benyújtották a Meteoritical Society Nevezéktani Bizottságához, ami 2011. június 27.-én Košice néven, H5 típussal befogadta azt a Meteoritical Bulletinbe. Link itt: https://www.lpi.usra.edu/meteor/metbull.php?code=53810

A következőkben a 2010-2016 között megjelent cikkekből, tanulmányokból válogattam a legfontosabb kutatási eredményeket. Külön hivatkozásokat itt most nem adok meg, a cikkekben fellelhetőek a további részletes adatok.

Itt jegyzem meg, hogy a Meteoritical Society által kiadott „Meteoritics&Planetary Science” folyóirat, – röviden MAPS – 2015 májusi száma jelentős cikksorozatot szentelt kimondottan a Košice meteoritnak. Ez talán azért is nagy jelentőségű, mert a MAPS a meteoritikai kutatások egyik vezető kiadványa.

A bolida

A felrobbanó tűzgömb részletes elemzéséhez a kutatók 7 radiométer (fénymérő), 3 videokamera és 6 földrengésjelző obszervatórium változó pontosságú de kimérhető adatsorát tudták felhasználni.

Az Európai Tűzgömb Hálózat (EN) kamerái radiométerekkel vannak felszerelve, amik a teljes égbolt fényerejét 500 Hz-es mintavételi frekvenciával és nagyon pontos időfelbontással mérik. Ezek még felhős égbolt esetén is működnek, esőt, havat kivéve. A rögzített fénygörbéből a meteortest széttöredezésére, fragmentációjára lehet következtetni, amit az extrém lassulással együttjáró nyomásváltozás (nyomás-stressz) okoz. Mint később kiderült 7 db ilyen fénygörbe adatait is megtudták szerezni, amikből a két legjobbat, a cseh Kuchařovice és Kunžak állomások adatait használták, bár ezek is 350-450 km-re voltak a hullástól. Mindkét állomás erős kitörést mutat 4,7-4,8 másodperccel a 22:24:45 UT időpont után, ez tehát a legnagyobb robbanás kimért időadata. Ezzel nagyon jól korrelálnak az említett Budapest melletti biztonsági kamerák fénygörbe adatai, ráadásul azok közelebb, 150-200 km-re voltak az eseménytől.

A Košice bolidáját 6 földrengésjelző obszervatórium is érzékelte és ezekből is lehet idő és energia terjedési adatokat számítani. Ebből a változatos adathalmazból cseh és szlovák kutatók rekonstruálhatták a hullás valószínűsíthető részleteit, ami mint később kiderült számos meglepetést tartogatott.

A Košice tűzgömb pályájának vetülete és a megtalált meteoritok
(jobb fent elől Alpinka környékén)

A meteortest lassulási görbéje, jobb fent a két darabra szakadt végső tömeg láthatóan elválik

Az adatok szerint a bolida végig szlovák terület felett Ny-D-ny-i irányból K-É-K-irány felé repült és a vízszintessel – viszonylag meredek – 60 fokos szöget zárt be. A videókról kimért felvillanási és kihunyási magasságok a rossz mérhetőség miatt nem pontosak, 55,2 km (Telkiből) és 17,4 km (Örkényből). A meteoroid számított légkörbe lépési sebessége 15,0 ± 0.3 km/s, (ez lassúnak számít!), ami a pálya végén észlelhető megmaradt főtestnél, alacsonyabb magasságon már 4,5 km/s-ra csökkent. Érdekesség, hogy videókról, a pálya végén a fő tömegről markánsan leváló 2. fragmentum azonosítható, ami kb. 3 km-re volt a főtest mögött és 3 km/s-ra lassult.

Az abszolút fényességet -18 mg-ra becsülik, ezáltal a mai terminológia szerint a Košice egy szuperbolida.

A bolida anyagának fragmentációja

A korábbi meteorit hullásokkor használt és ott jól szereplő cseh elméleti modellek – a lassulásból, fénygörbéből, stb – a meteoroid kezdeti tömegét kondritos testre kb. 3500 kg-nak becsülték, ami 1,23 m átmérőnek felel meg. (A nem túl pontos abszolút fotometria miatt 3-as bizonytalansági tényezőt vettek). A cseh kutatók a fénygörbe, szeizmikus adatok és dinamikai modell szerint lehetséges hullási forgatókönyvet számítottak, amit részleteiben itt ismertetek:

Az első jelentős széttöredezettség, valószínűleg két szakaszban, 57–55 km magasságban történt, először kb. egy 1500 kg-os test vált le a fő tömegről. Ennek egy kisebb része – 165 kg – milliméter méretű porrészecskék formájában elpárolog, ami egy púpot képez a fénygörbén 57–49 km magasságban. A nagyobb rész, ami kb. 200 db 5-10 kg-os töredékből szabadul el, 49-39 km-en megnöveli a bolida fényességét. (ezt a fázist piros „A”-val jelöltem)

A bolida fragmentáció-modellje

A még mindig 2000 kg-os főtest 39 km magasságban – 1 MPa dinamikus nyomáson – erős robbanás mellett darabjaira esett, különösen kirívó fragmentációt okozva. Ezt a robbanást valószínűleg három nagyobb tömegű, minimum 20–100 kg-os töredék élte túl, amik 30 km alatti magasságokon tovább darabolódtak és kisebb felvillanásokat okoztak a fénygörbén. A 39 km-en felszabaduló tömeg további részét – a modellben 1740 kg-ot – kisebb méretű töredékekkel modellezték amik egy része elpárolgott vagy a bizonytalanság miatt tovább már nem modellezhető. (ezt a fázist piros „B”-vel jelöltem)

A három túlélő – eredetileg 20-100 kg-os – töredék – a nagymértékű abláció és fragmentáció mellett elérte a 30 km alatti magasságot és tovább darabolódva földet ért. Bár ez a modellnek már kritikus és bizonytalan szakasza, elsősorban a bolida utolsó fázisának lassulási adatai és a pontatlan fénygörbe miatt.

A pálya végén látható leváló 2. fragmentum viszonylag nagy, kb. 20 kg-os tömeggel lassul és 21,5 km-en végül darabolódik. A megmaradó fő tömegek hasonló magasságon szintén fragmentálódnak és a sötétrepülés szakaszában a magaslégköri szelek által befolyásolva néhány száz km/h-s sebességgel csapódnak, az éjfél körüli szlovákiai táj hóval borított, fagyott felszínébe. A modell becsli még, hogy hullás végén a főtest egy vagy több 2-8 kg-s töredékből állt és nem haladhatta meg a 10 kg-ot. Ide természetesen nem számítjuk a korábbi fragmentációkból keletkező, kicsi és közepes méretű meteoritokat. Érdekes még, hogy 2db, kg-on felüli fő darabot említenek a kutatók és többet már nem várnak, ezek szerint mindkettőt megtalálták volna?

A számítások érdekessége a kondrit meteoritoknál is kirívóan erős ráadásul „kettős” fragmentáció, hiszen mint emlékszünk a két fődarabot egymástól 1,4 km-re találták meg.

Vajon mi okozhatta ezt?

A választ a lehullott példányok Co60 izotópos elemzése (Povinec és tsai, 2015) adta meg. A Košice meteorit ugyanis két eltérő szerkezetű de H5 típusú normál kondritos testből állt össze. Az egyik egy erősebb, jól megtartott szerkezetű testrész volt, míg a másik ún. pre-fragmentációt szenvedett el korábban a Világűrben. Mint korábban láttuk ez utóbbi telis-tele van ún. töredezett anyagú breccsás és fekete sokkolt erekkel átszőtt, repedéses, lazább szerkezetű meteorit részekkel. A két test nagyjából a szerkezeti határuknál vált el egymástól, hiszen mintáikat jól elkülönülő szórási területen találták meg. Az abláció százalékos mértéke a Košice esetében is, mint általában a meteorit hullásoknál igen nagy volt, kb. az eredeti meteoroid 99-99,5%-a párologhatott el.

A Košice meteoroid naprendszerbeli pályája

Spurný és kutató társai a kimért videók alapján kiszámították az eredeti meteoroid naprendszerbeli pályáját, ami a 15. ilyen ismert lett a világon. A részletes adatokat lentebb táblázatban foglaltam össze. A jobb oldali ábrán a meteoroid pályája látható középen a Nappal, a legkülső bolygó itt a Jupiter. A bizonytalan mérési eredmények miatt csupán egy valószínű pályasávot lehet megadni. Jól kitűnik, hogy a kondritos meteoroid a fő aszteroida övből érkezett, mint az ilyenek általában. A NEO-k (Földet megközelítő kisbolygók) 24%-a jön a fő-övböl (Bottke, 2002). Pályája a Jupiterrel 8:3 rezonanciában van, három másik Apolló-típusú kisbolygót ismerünk még hasonló rezonanciákkal, a 2002 CX58, 2009 BC11 és a 2000 DO8 jelűt. Hogy ezek egy azonos kondritos forráségitest családot alkotnak vagy más ok áll a háttérben ezt érdemes tovább vizsgálni.

A pályaadatok:

Fél nagytengely hossza, a 2,71 ± 0,24 AU
Excentricitás, e 0,647 ± 0,032
Perihélium távolsága, q 0,957 ± 0,004 AU
Afélium távolsága, Q 4,5 ± 0,5 AU
Perihélium argumentuma, ω 204,2  ± 1,2°
Felszálló csomó hossza, Ω 340,072  ± 0,004°
Inklináció, i 2,0  ± 0,8°

A magyarországi Košice meteoritok

Magyar intézeteknél, szervezeteknél, gyűjtőknél, stb. lévő Košice példányok száma, tömege pontosan nem ismert. Arra tudok csak hagyatkozni amit láttam, vagy információm van róla. E szerint talán néhány – 3-4 db – 100 gr feletti példány, 5-6 db 40-100 gr közötti minta és 10-20 db kisebb meteorit lehet itthon. 4-5 db kisebb kondrit lehet kutatóintézetekben, részben már felvágva és/vagy kutatási célú vékonycsiszolatnak feldolgozva. A magánszemélyek által talált Košice meteoritok száma nem ismert, néhány ha lehet, többségük külföldről vásárolt és közgyűjteményben kiállított mintáról nem tudok.

Hazai Košice meteorit példányok

A Košice meteoritról 2010 óta számos tanulmány született (2010-2016) amik közül jónéhány ma is hivatkozási alap más hullásokhoz, ezeket az irodalom jegyzékben részletesen felsoroltam. Emellett talán még több ismeretterjesztő cikk, tv adás foglalkozott különösen 2010-ben az érdekes témával, ami az esemény után ahogy szokott le is csengett. Cikkem a hullás 10. évfordulóján megpróbálta összefoglalni, az eltelt időszak kutatási, gyűjtési és egyéb eredményeit, mintegy emlékezve a 10 évvel ezelőtti nem mindennapi éjszaka történéseire, az utána következő keresésre és az utolsó közelünkben hullott meteoritra.

Irodalom és hívatkozások:

Borovička Jiří, Tóth Juraj, Igaz Antal, Spurný Pavel, Kalenda Pavel, Haloda Jakub, Svoreň Ján, Kornoš Leonard, Silber Elizabeth, Brown Peter, Husárik Marek, (2013), The Košicemeteorite fall: Atmospheric trajectory, fragmentation, and orbit, Meteoritics & Planetary Science, vol. 48(10), 2013, s. 1757–1779.

Borovička Jiří, Spurný Pavel, Brown Peter, (2015), Small Near-Earth Asteroids as a Source of Meteorites, arXiv.org, arXiv:1502.03307, 2015.

Gritsevich Maria, Vinnikov Vladimir, Kohout Tomáš, Tóth Juraj, Peltoniemi Jouni, Turchak Leonid, Virtanen Jenni, (2014), A comprehensive study of distribution laws for the fragments of Košicemeteorite, Meteoritics & Planetary Science, vol. 49(3), 2014, s. 328-345.

Kohout Tomáš, Havrila Karol, Tóth Juraj, Husárik Marek, Gritsevich Maria, et al., (2014), Density, porosity and magnetic susceptibility of the Košice meteorite shower and homogeneity of its parent meteoroid, arXiv.org, arXiv:1404.1245, 2014.

Kubovics Imre, Turcsányi Anasztázia M., Vizi Pál Gabor, (2010), Trajectory and Speciality of Fireball-Meteorite “2010.02.28 Cassovia” from Security Cameras and from Reports of Local Inhabitants, AMRC Symposium 2010.

Kubovics Imre, Vizi Pál Gabor, Bendő Zsolt, (2012), Trajectory and Analysis of Fireball-Meteorite “2010.02.28 Košice” from Security Cameras and from Electron Microscopic Examination, 43th Lunar and Planetary Science Conference, Texas, 2012. Abstract [#2816].

Mäsiar Ján, (2010), Niezwykły sukces słowackich astronomów, Meteoryt, 2, 2010, s. 3-5.

Ozdín Daniel, Plavčan Jozef, Horňáčková Michaela, Uher Pavel, Porubčan Vladimír, Veis Pavel, Rakovský Jozef, Tóth Juraj, Konečný Patrik, Svoreň Ján, (2015), Mineralogy, petrography, geochemistry, and classification of the Košice meteorite, Meteoritics & Planetary Science, vol. 50(5), 2015, s. 864–879.

Povinec Pavel P., Tóth Juraj, (2015), The Fall of the Košice Meteorite, Meteoritics & Planetary Science, vol. 50(5), 2015, s. 851-852.

Povinec Pavel P., Masarik Jozef, Sýkora Ivan, Kováčik Andrej, Beňo Juraj, Meier Matthias M.M., Wieler Rainer, Laubenstein Matthias, Porubčan Vladimir, (2015), Cosmogenic nuclides in the Košicemeteorite: Experimental investigations and Monte Carlo simulations, Meteoritics & Planetary Science, vol. 50(5), 2015, s. 880-892.

Sansom Eleanor Kate, (2016), Tracking Meteoroids in the Atmosphere: Fireball Trajectory Analysis, Ph.D. thesis (dysertacja), supervisor Philip Bland, Faculty of Science and Engineering, Curtin University, 2016.

+Tóth Juraj, Svoreň Ján, Borovička Jiří, Spurný Pavel, Igaz Antal, Porubčan Vladimír, Kornoš Leonard, Husárik Marek, Krišandová Zuzana, Vereš Peter, Kaniansky S., (2010), Meteorite Košice– The Fall in Slovakia, International Meteor Conference, IMC 2010, Sep. 16-19, 2010, Armagh, UK.

Tóth Juraj, et al., (2011), The KošiceMeteorite, International Meteor Conference, IMC 2011, Sep. 15-18, 2011, Sibiu, Romania.

Tóth Juraj, (2011), Planéty, asteroidy a meteority, wykład w ramach Bratislavská vedecká cukráreň, Bratislava 2011.

Tóth Juraj, Borovička Jiří, Igaz Antal, Spurný Pavel, Kornoš Leonard, Haloda Jakub, Ozdín Daniel, Povinec Pavel P., Sýkora Ivan, Veis Peter, Kohout Tomáš, Svoreň Ján, Husárik Marek, Vereš Peter, Porubčan Vladimír, (2014), Meteorit Košice- nález a analýzy, Esemestník. Spravodajca Slovenskej mineralogickej spoločnosti, 1, 2014, s. 20-21.

Tóth Juraj, Svoreň Ján, Borovička Jiří, Spurný Pavel, Igaz Antal, Kornoš Leonard, Vereš Peter, Husárik Marek, Koza Július, Kučera Aleš, Zigo Pavel, Gajdoš Štefan, Világi Jozef, Čapek David, Krišandová Zuzana, Tomko Dušan, Šilha Jiří, Schunová Eva, Bodnárová Marcela, Búzová Diana, Krejčová Tereza, (2015), The Košicemeteorite fall: Recovery and strewn field, Meteoritics & Planetary Science, vol. 50(5), 2015, s. 853–863.

A Sikhote-Alin meteorit

Szerző: Kormos Balázs

A modern kor legnagyobb becsapódó vasmeteoritja nem más, mint a 1947. február 12-én a Föld légkörébe behatoló Sikhote-Alin meteorit, mely a nevét a Szihote-Aliny térségről kapta, mely Vlagyivosztoktól 375 km-re található északra. 1947-től 1950-ig a SZUTA Meteoritbizottságnak a munkatársai, először V.G. Feszenkov, majd Je.L. Krinov (1963) vezetésével, több expedíciót vezettek erre a területre.

Krinov szerint a meteorból, annak szétrobbanása után, igen sok szilánk repült szét. Ezeknek nyomán 78 kis méretű krátergödör és 122 nagy kráter képződött a talajon. Ez utóbbiak átmérője 0,5 és 26,5 m között váltakozik. A hatalmas vastömeg, melyből 1963-ig 23 t-nyit sikerült összegyűjteni, mintegy 70 t lehetett. Az egészen kicsiny nagyságú meteorikus törmeléket mágnesek segítségével gyűjtötték be a terepen. A gömbszerű szemcsék mérte a néhány mikrométertől a néhány száz mikrométerig terjedt. Anyaguk természetesen vas-nikkel, mely a lezuhanásuk óta eltelt idő alatt erősen oxidálódott. A régi feljegyzéseknek köszönhetően tökéletes pályaszámításokat végeztek mely alapján kiderült, hogy a hatalmas meteorit kétségtelenül a kisbolygóövezetből származik.

Az objektum csaknem Budapest földrajzi szélességén robbant fel. A jelenség természetesen erős fényű tűzgömbként mutatkozott, s északról dél felé haladt át ragyogó napsütésben, tiszta égbolton. Felvillanása a beszámolók szerint mindössze néhány másodpercig tartott. Fénye annyira erős volt, hogy valósággal elvakította a szemtanúkat, akiknek beszámolója alapján P.I. Medvegyev, a szovjet Meteorbizottság egyik munkatársa később festményt is készített az eseményről. A meteortest útját vastag porcsóva kísérte, amely több óra elteltével is látható volt. A tűzgömb eltűnése után a robbanáshoz hasonló detonáció hallatszott, melyet morajlás követett. A lakott területeken, amelyek fölött a kozmikus eredetű test átszáguldott, az ajtók felpattantak, az ablakok betörtek, a mennyezetről lehullott a vakolat, a képek leestek, s a talaj megrázkódott.

Az első expedíció pár nappal az esemény után tíz tudóssal érkezett a helyszínre. Megállapították, hogy az objektum 14,5 km/s sebességgel lépett be a légkörbe. Egységes testként érkezett, s amikor szétrobbant, legalább ezer darabra szakadt. A nagyobb darabok a becsapódáskor tovább zúzódtak. Ennek megfelelően tehát két csoportot különböztetünk meg. A légköri robbanáskor, illetve a becsapódáskor szétszóródott darabokat. A szórásmező nagyjából 2 km hosszú és 1 km széles, ami elég kicsi területnek számít. Ez arra enged következtetni, hogy a robbanás alacsonyan történt. Valószínűleg a 6 km-s magasságot sem érte el. A kráterek vizsgálata közben sok érdekességre derült fény. A legnagyobb kráter 6 m mély, a többi jóval kisebb. Néhány kráternél a meteoritok csatornákat vágtak a talajba. Hosszuk 2 és 8 m között változik. Laza föld tölti ki őket, s valamennyi esetben egy-egy meteoritot találtak a csatornák végében.

Az első felfedezett példány egy 255,6 kg-os meteorit volt. Ez téglatest alakban állt meg egy nyolc méter hosszú csatorna végében. A második egy 440 kg-os lapos formájú egyed volt. Ez a példány nem vájt csatornát, de ami rendkívül érdekes, hogy nekiütközött egy fatönknek, amelyet szét sem zúzott. A legnagyobb darab 1745 kg tömeget képviselt. Ez csak 3,2 m hosszú csatornát vájt, mivel a darab lapos volt és lapjával csapódott a földbe.

A legérdekesebb becsapódások másodlagos, illetve harmadlagos krátereket is létrehoztak. A Holdon találkozhatunk még ilyen jelenséggel. Ennek oka nem más mint, hogy egyes darabok visszapattantak a felszínről. Például egy 180,5 kg-s darab egy 1,5 m-s krátert ütött majd 5,5 m-t repült visszapattanva a levegőbe. A nagy kráterek körül 10-20 méteres körzetben a légnyomás gyökerestől szakította ki a fákat. A távolabbi fák lombozata tört le.

A világhíres Hraschina vasmeteorit

Szerző: Kereszty Zsolt
(IMCA, MetSoc, IMO, MCSE)

Az első – régi – magyar meteoritunk 1751. május 26-án délután 6 óra körül hullott, az akkori Agram városától (Zágráb) 45 km-re ÉK-re lévő Hraschina település mellett, ma Horvátország. 1920-ig Zágráb német megfelelőjét, az Agram nevet használták, csak később terjedt el az általunk ismert Hraschina.  A keleti égen feltűnő, két nagyobb és több kisebb darabra hulló hangrobbanásos, füstnyomot hagyó nagyon fényes tűzgömböt sok szemtanú látta, elsősorban a környékbeli földeken dolgozó megrémült helyiek, de még szigetvári észlelés is maradt ránk, ahol viszont hangot nem jelentettek. A ritka jelenség híre hamar eljutott Bécsbe, a császárnő a hírek ellenőrzésére bizottságot küldött a helyszínre, ők rögzítették a szemtanúk máig felbecsülhetetlen értékű megfigyeléseit, sőt később rajzos észlelések is előkerültek, Haidingeré a legismertebb. Ezekből tudjuk, hogy a füstnyom órákig látszott és alakja a szél miatt folyamatosan változott.

A meteorit bolidája Haidinger rajzán

A 39,7 kg-os nagyobb meteoritot Michl Kollar helybeli lakos találta szántás közben kb. egy héttel az esemény után. Elmondása szerint a darab egy 50 cm széles és 120 cm mély tölcsér alakú kráterszerűségben ült. A kisebb 9 kg-s meteorit a nagyobbtól kb. 2000 lépésre volt egy 90 cm széles és 90 cm mély gödör alján. A darabokat a zágrábi püspökhöz küldték, aki bemutatta azokat a bécsi vizsgálóbizottságnak. A nagyobb először a Kincstárba, majd 1777-től a Császári ásványi gyűjteménybe került, ahol ma is látható annak egyik legbecsesebb példányaként, a kisebbet helyi kovácsok 3 részre osztották (Zágrábba, Pozsonyba, Hraschinára kerültek) de végül elvesztek az időközben eltelt 270 év alatt. Érdekesség, hogy a bécsiek először nem fogadták el, hogy ezek az égből esett valóságos meteoritok, ami nem csoda, hiszen akkoriban nem tudták, hogy mik is ezek és honnan jönnek. A vitára a francia Chladni tett pontot, éppen az 1803-as L’Aigle mellett hullott kondritokra és a Hraschinára alapozva.

A fő tömeget a korabeli jelentés háromszög alakúnak és regmagliptekkel (apróbb-nagyobb lekerekített peremű gödröcskék a felszínen) tarkított fekete fémes színűnek írta le. A meteoritból Bécsben csak kisebb kiemelkedő részeket vágtak le, az egyik ilyet Alois von Widmanstätten a birodalmi “Fabriks-producten Kabinet” igazgatója, korabeli vas és öntödei szakértő vizsgálta 1808-ban. A felületet nagy nehézségek árán síkra csiszolta, még nehezebben tükrösre polírozta, majd a korban elterjedt egyik fémvizsgálati módszerrel szabadlángon felhevítette. A vasmeteoritokban lévő alacsony nikkel tartalmú kamacit és magas Ni tartalmú ténit fázis eltérő módon oxidálódik és ez meglátszik a felhevített felületen. Widmanstätten észlelte, hogy a 4×2,5 cm-es minta felülete hevítéskor érdekes, színes, egyedi rajzolatú – földi anyagokban nem akkor még nem ismert – rácsos szerkezetet mutat. Így fedezte fel függetlenül az angol természettudós Thomson után pár évvel, a vasmeteoritok egy jelentős részére jellemző és ma mint Thomson-Widmanstätten néven ismert mintázatot (gyakran csupán Widmanstätten-t mondunk, de ez helytelen az első felfedező Thomson-ra nézve…). Rövidesen megismételte a kísérletet, de ekkor már salétromsavas keveréket használt, és ekkor is előjött a korábban megfigyelt struktúra, de itt már nem tapasztalt elszíneződést. Tanult barátai körében elvégzett kísérletet végül soha nem publikálta, Neumann volt az, aki 1812-ben elsőként leírta a tapasztaltakat és az eljárás hamar elterjedt a kor meteoritos szakemberei között. Néhány év múlva a különös “struktúra-előcsalogató” módszerrel igazolták a császári gyűjtemény Elbogen, Lénártó vasmeteoritjain is az oktaedrites szerkezetet. Később a mintázatot mesterséges fémes anyagokban is kimutatták (Arnold & McWilliam 1904).

A bécsi Természettudományi Múzeum épülete
A Hraschina meteorit fő tömege

Mivel a fő tömeg soha nem lett jelentősen elválasztva/megvágva, így a meteorit szerkezetére csak a felszín közeléből vett kisebb minták tanulmányozásából következtethetünk. A dán vasmeteorit-szakértő Wagon F. Buchwald (ő találta a nagy grönlandi Cape York meteoritot) ma is alapműnek számító “Iron meteorites I-II-III” 1975-ös könyvében meg is jegyzi, hogy a Hraschina kémiai összetétele bizonytalanul tisztázott, különösen amiatt, hogy egyes nagy gyűjteményekben meglévő példányai valójában nem is Hraschina minták (pl. Londonban egy Toluca nevű vasmeteoritot hittek annak).

Az első tudományos igényű leírását Holger adta 1830-ban, ő 11,84% Ni-t, 1,26% Co-t mért, Wehrle (1835) pedig 8,88% Ni-t. Cohen & Weinschenck 1891-ben sósavban feloldott egy 31-gr-os darabot és 0,133 g schreibersitet, 57,46% Fe-t, 25.78% Ni-t, 1,32% Co-t és 15,31 % P-t talált. Buchwald szerint bár összetétele pontatlan, de talán az alábbi tájékoztató jellegű becslés adható: 10,1 ± 1% Ni, 0,6% ± Co, 0,4% ± 0,1 P. A problémát az okozza, hogy a felszín közeléből több helyről vett kis (!) minták eltérő kémiai összetételt mutathatnak, sőt a modern mikroszondás vizsgálatok esetében nagyon nem mindegy, hogy hol mérünk, mert a kamacit lamellák szélein feldúsul a Ni, míg a sáv közepe felé lecsökken. A korszerű vasmeteorit geokémiai klasszifikációja viszont nem a fenti elemeken, hanem a Ga, Ge és Ir nyomelemek eloszlásán alapul. E szerint a Hraschina a viszonylag ritka, mindössze 26 tagot számláló IID típusba sorolható. Ebből csupán kettő a szemtanús hullás, a másik az 1912-es dél-afrikai N’Kandhla.

A vasmeteoritok tárlója Bécsben, középen jobbra a Hraschina
A meteorit szelete a Thomson-Widmanstätten mintával

Buchwald készítette az eleddig legpontosabb vizsgálatot a meteoriton egy bécsi és egy Smithsonian kismintán. Az újrakristályosodott kamacit vonalak szélességét változónak, de átlagban 0,7 ± 0,1 mm-nek találta, a kamacitszemcsék méretét 50-100 μm-nek mérte, határaikon 1-6 μm-es foszfidszemcsékkel. A keménység 185 ± 10 (Vickers), de megjegyzi az ismételten jelentkező problémát, hogy a minták sehol sem voltak távolabb a leolvadt felülettől, mint 8 mm! A ténit és plesszit a teljes mennyiség kb. 35 %-át teszi ki, a ténit lamellák olykor szélesebbek és sárgák. Apró schreibersitet, rabditot, troilitet, daubrelitet is kimutat, de grafitot, szilikátokat nem. Nagyobb méretű troilit és schrebersit csomókat nem talált. A meteorit szerkezete rokonságot mutat a Treysa, Zacatecas és Sanderson IIIAB osztályú meteoritokkal, ami felveti a kapcsolatot a IID és IIIAB típusok között. Hogy ennek mi a valódi oka, még nem tudjuk, talán a közös kozmikus keletkezés nem elvethető.

A meteorit bécsi Természettudományi Múzeumban forgó zsámolyon őrzött tankönyvbe illő szépségű példányát sok év óta évente megcsodálom és mindig valami újat fedezek fel rajta. A nagy nyílhegy alakú példány, matt fekete-kékes olykor barnás-sárgás (utóbbi elszíneződés a 270 éves oxidáció hatása vagy éppen földi talajszennyeződés lehet) olvadási kérge közül az éleken kibukkan a fő összetevőt adó fémes vasnikkel. Bár a világosabb belsejű regmagliptek lekerekítettek, néhol feketébb éles peremek és egyenes, tűszerű benyomódások figyelhetők meg, ez más vasmeteoritok esetében a schreibersit és/vagy az ún. Brezina-lamellák jele, de itt ezt még nem mérték. A felszínen gyakori a hullás közben keletkező párhuzamos, radiális jellegű tipikus folyásnyomos hálózat. A példány teteje repesszerűen olvadt le, talán robbanáskor itt vált le egy kisebb fémes zóna. A forgó platformon az alját nem látni túl jól, de ott is regmagliptes a felszín és nem látni másodlagos olvadási nyomokat és ajakrúzsszerű körülfolyást (ún. roll-over lipp-et). Ismert egy másik töredék példánya is, M. Horejsi amerikai magángyűjtőnél, ami teljesen eltér a fő tömeg jellemzőitől. Ez egy tipikus repesz alakú példány, feltételezhetően, a kisebb darabhoz tartozhat, de ezt a gyűjtő birtokában található – és nem közölt – régi múzeumi cédulák alapján lehetne csak beazonosítani.

Az ismert Hraschina példányok a világ múzeumainak legritkábbjai között szerepelnek. A Monica Grady (NHM London) féle “Catalogue of Meteorites” alapműnek tekintett meteorit regisztere az alábbi ismert példányokat közli: 39 kg (NHM Bécs), 20,5 gr (MfN Berlin), 0,8 gr (AMNH, New York), 9 gr (FMNH Chicago), 0,4 gr (USNM Washington), 1,6 gr (GSI Calcutta). Megjegyezni kívánom, hogy korábban ismert volt 4 db “Hrasina” néven katalogizált magyar minta is mely szerepel az 1951-es Tokody-Dudichné féle “Magyarország meteoritgyűjteményei” című katalógusban is (63 gr, 1,5 gr, 0,7 gr, 0,3 gr). De a Természettudományi Múzeum 1956-os sajnálatos tűzvésze után az 1969-ben készült Ravasz Csaba-féle új katalógusban ezek már nem szerepelnek. Hogy a példányok elvesztek vagy felismeretlenül esetleg félrecetlizve hevernek a raktárban, ezt célszerű lenne tovább vizsgálni.

A jellegzetes feketés olvadási kéreg a regmagliptes felszínnel
A repesz alakú példány (M. Horejsi, USA)

Komolyabb magángyűjteményekben minimális mennyiség található, a gyűjtők által hiperritkának és No1-nek minősített példány az utóbbi két évtizedben csak 1-2-szer bukkant fel. Amikor az egyik komoly gyűjtő barátommal beszélgettem róla, hogy milyen jó lenne belőle akár csak egy pici is, azt mondta erre: jó, ha egyszer az életben tudunk belőle szerezni, de leginkább egyszer sem… Tapasztaltam, hogy régi magán- és közgyűjteményben nem kellően igazolt eredetű vagy félrecetlizett, összetévesztett minta található. A nemzetközi meteoritikai közösségben sokan tudják rólam, hogy elsősorban a magyar illetve régi magyar meteoritok érdekelnek, ezért jó pár évvel ezelőtt felkínáltak nekem egy régi osztrák “Agram” cédulával ellátott viharvert példányt, ami állítólag a bécsi múzeumból származott. A kisördög ott motoszkált bennem, hogy milyen jó lenne, de ezt egy ilyen régi meteoritnál modern mérőeszközökkel kellene igazolni. Az eladó nem akárki volt, a ma élő legjelentősebb meteoritgyűjtő, aki bele is ment a mérésbe, amit Párizsban végeztettünk el. Végül kiderült, hogy nem Hraschina példányról van szó… fájdalomdíjul kaptam tőle egy másolatot a falamra a meteorit Brezina professzor által készített korabeli reprodukciójáról.

Szintén pár éve egy másik komoly forrásból lehetőségem nyílt megvásárolni egy pár cm-es Hraschinának mondott, régi amerikai gyűjteményből származó szeletet. Rutinosan itt már alapból elvégeztük a méréseket immáron itthon és láss csodát, a kamacit vonal szélességek, a mintázat és a Ni, Co és P értékek kísértetiesen passzoltak a szakirodalomban – itt előbbiekben is – részletezettekhez. Jelen pillanatban a Ga, Ge és Ir nyomelemek meghatározásán van a sor. Ez sajnos nem egyszerű és ráadásul roncsolásos mérés, de rendkívül összecsengenek és biztatóak a korábbi mérési eredmények, igazából egy 2. kontrollmérést szeretnék a magam megnyugtatására. Ha ez beigazolódik, akkor valószínűleg ez lesz az egyetlen (!) igazolt magyar Hraschina meteorit példány! Ennek fotóját most adom közre először, a minta restaurálását és savval történő maratást (étetést) magam végeztem. A makrofotókon jól látható a jellegzetes közép-oktaedrites Thomson-Widmanstätten mintázat és a kissé oxidált kéreg.

A saját példányom makrofotói, figyeljük meg a jól fejlett kamacit sávokat és a sűrű, párhuzamos vonalas ténitet

Másik érdekesség, hogy a 2018 áprilisi horvát bolida esetleges példányainak keresésére indítottunk egy “gyorsreagálású” expedíciót, szinte közvetlenül az esemény után (Csizmadia, Hegedűs, Zelkó számításai alapján, Madar, Nagy, jómagam és mások, mint keresők). A hullási zóna közel esett Hraschina (Hrašćina-nak írják a horvátok) községhez, természetesen és számunkra kihagyhatatlanul meglátogattuk azt. A kisvárosias hangulatú horvát hegyi helység szépen őrzi a meteorit emlékét. Többnyelvű tájékoztató táblák, útirányjelzők kalauzolnak el a hullás helyén felállított emlékműhöz. Itt a fő tömeg 1:1 méretű fémből készült jó minőségű másolata van kiállítva, a hullás és általában a meteoritokról szóló tájékoztató táblával. Expedíciós társaimmal beleszimatoltunk a hely autentikus levegőjébe, lelki szemeink előtt láttuk a 2 részre robbanó tűzgömböt és elképzeltük, ahogy mi találjuk meg a világhíres és első régi magyar meteoritunkat, a Hraschinát.

A Hrašćina helységnévtáblánál 2018-ban
A hullás helyén lévő emlékmű