A Sericho pallazit

2016-ban két testvér a kenyai Habaswein falu közelében az elkóborolt tevéit kereste. Feltűnt nekik, hogy sok, viszonylag nagy köveket látnak, pedig azon a területen ritka dolog köveket találni. Arra gondoltak, hogy a kövek talán meteoritok, hiszen a tevehajcsárok második bevételi forrása, hogy meteoritgyanús köveket el tudnak adni a városi kereskedőknek. Néhány hetet arra szántak, hogy a köveket összegyűjtsék habaswein-i házuk udvarába. Egy idősebb falubeli elmondta nekik, hogy ő és fivérei már gyerekkorukban játszottak ezekkel a fura kövekkel. A két szorgalmas testvér közel egy tonnányi követ gyűjtött össze. A köveket később vizsgálat alá vették és kiderült, hogy a kövek valóban meteoritok, méghozzá a legritkább típusú un. kő-vas meteorit, azaz pallazit. 2017. január elején Michael Farmer kapott egy e-mailt, ami egy 107 kg-os pallazit fotóját tartalmazta. Nairobiba utazott, és megvásárolta ezt a követ. Két héttel később visszatért Kenyába Moritz Karlhoz, és Habasweinbe utazott. Itt mutatták meg a már említett testvérek, hogy több mint egy tonna példányt hordtak össze a házuk udvarán.

A képen Michael Farmer látható, aki többször járt Kenyában. A képen a Thika meteorit főtömegével (3575 gramm) és annak megtalálójával, 2011. 07. 16-án. (Mihael Farmer engedélyével)

Tehát Kenyában vagyunk, Isiolo megyében. Habaswein-től nyugatra és Sericho-tól délre lévő területen egy kb. 45 km-es szórásmezőről származnak a begyűjtött példányok.

Kilogramm alatti példányoktól 500 kg közötti tömegeket találtak, ill. találnak. A mai napig 2800 kg-ot gyűjtöttek össze ebből a meteorit hullásból. (Tudom, hogy a „vájt fülű” gyűjtők hullottnak (fall) csak a szemtanús eseményt ismerik el, a többi csak talált (found), no de ez sem létrán jött le anno.)
A falubeliek még ma is találnak darabokat, többnyire a felszínen, ezek döntő többsége 50 kg-nál kisebb példány. A felszínen talált meteoritokon minimális az időjárás okozta hatás, öregedés. Sok példányon található az olvadási kéreg nyoma. Több repülés orientált példányt találtak, köztük egy 129 kg-os és két 16 kg-os mintát.

A Sericho olivin kristályai általában lekerekítettek, és színeik a csillogó zöldtől a narancsig terjednek. A Sericho pallazit fémben gazdag területei jól fejlett Widmanstätten-mintákat mutatnak. A meteorit kisebb darabjai bizonyítják, hogy a beérkező meteoroid fragmentálódott amikor hangsebesség közeli sebességre lassult. Néhány darabon, foltokban, megmaradt a fúziós vagy olvadási kéreg.

Habaswein környéke (01°5’41.16″N, 39°6’8.30″E)

Természetes velejárója a dolognak, hogy amint egy kő dollárokat hoz, komolyabb keresés is elindul, ennek következtében néhány, már a felszín alatt lévő minta is előkerült.

A képen egy nagyobb példány kiemelése látható (NFD, 2017. 06. 13)

Mivel a nagyobb darabokat Sericho falu közelében találták, a pallazit végső neve Sericho lett és 2017. 08. 06-án tették „hivatalossá”, majd a Meteoritical Bulletin, 106. közleményében jelent meg, hogy lajstromba vették.

A pallazitok valóban nagyon ritkák, a hullásoknak csupán 1,2%-a pallazit. A pallazitok Péter Simon Pallasról (1741-1811) kapták a nevüket. Ő adott elsőként részletes leírást egy Krasznojarszk közelében a hegyekben talált érdekes kőzetről. Később derült ki, hogy a minta égi eredetű.

A kisbolygó-méretű test köpeny-mag határáról származhatnak ezek az anyagminták. A két fő alkotó ásvány, fémes vas-nikkel és az olivin. Mellettük kisebb mennyiségben tartalmaznak még schreiberzitet, troilitet és foszfátokat is.

A Sericho meteorit geokémiai vizsgálatának eredménye:

Olivine Fa12.3±0.1, FeO/MnO=57.4±5.4, Cr2O3=0.03±0.01, n=15; kamacite Ni=7.1±0.6 wt%, Co=0.81±0.02 wt%, P=0.06±0.02 wt%, n=17; and schreibersite (Fe1.51Ni1.45Co0.01)P, n=3.

A vizsgálatot végző személyek; L. Garvie, A. Wittmann, D. Schrader, (ASU)
(forrás: MetBull)

Saját, 29,95 grammos példányom

Még annyit jegyeznék meg, hogy a Sericho nem a legstabilabb pallazitok egyike. Ezért célszerű zárt dobozban, sok szilikagélt használva tárolni.

 

Szerző: Dénes Lajos

Meteoritkráter Expedíció a Kutatók Éjszakáján

Idén is várjuk kedves Olvasóinkat a Kutatók Éjszakáján!

2018. szeptember 28-án pénteken 18:30-19:30 között a Budapest-Fasori Evangélikus Gimnáziumi helyszínen (1071 Budapest, Városligeti fasor 17-21., Természettudományi előadó) „A Meteoritkráter Expedíció kalandjai” címmel adok elő. (A részvétel díjtalan, regisztráció nem szükséges.) (A Meteoritkráter Expedíciónak a lengyelországi Morasko-krátermezőnél tett kutatóútjáról szóló kisfilm itt tekinthető meg)

Szerző: Rezsabek Nándor

Dénes Lajos: Meteorithamisítások

Ha valaki feltéved úgynevezett adok-veszek oldalakra, akkor sajnos, hamar belefuthat hamis meteorit hirdetésekbe. Már a feltűnően magas árnak is gyanúsnak kellene, hogy legyen, de az árusok hihetetlen történeteket mellékelnek amiatt, hogy eloszlassák a kételyeket.

Az egyszerű csalók salakdarabokat vagy a megszokottól eltérő kavicsokat árulnak. De vannak profi csalók is, akik valódi meteoritet árulnak, csak nem azt, aminek nevezik őket.

Mindkét esetről írok példát!

A Port Orford-i pallazit

A egyik főszereplő Dr. John Evans orvos.

A kaland úgy kezdődött, hogy 1847-ben Dr. David Dale Owen, akit az Egyesült Államok Geológusának neveztek ki, Wisconsin, Iowa, Minnesota és Nebraska egy részének geológiai felmérésének elvégzésére utasították. Ő a munka elvégzésére Dr. John Evans és Dr. BF Shumard munkatársakat választotta. Evans munkája hamarosan felkeltette Owen figyelmét, és megállapította, hogy az orvos geológusként is megállja a helyét.

1848-ban egy Midwesti felmérésen vett részt, bár orvos volt, mégis sok érdekes fosszíliát gyűjtött be, amik miatt komoly nemzetközi elismerést szerzett.

Később Dr. John Evans egy expedíció részeseként ment el, hogy a Kelet-Puget Sound vasútvonal számára megfelelő nyomvonalat jelöljenek ki. Ekkor már geológusként alkalmazták.

1856-ban Oregonba költözött munkája részeként és ez évben Port Orford területére utazott. Dr. Evans két hetet töltött a Coquille és az Umpqua folyók területén a déli Oregon partján. Valahol az út mentén összegyűjtött egy kőzetmintát, amelyet a bostoni kémikus Dr. Charles Jackson elemzett, és rávilágított arra, hogy ez egy kivételes fajta meteorit, amelyet pallazitnak neveznek.

A másik főszereplő maga a pallazit meteorit, amely a kő-vas meteoritek családjába tartozik. Fe-Ni ötvözet és szilikátos anyag keveréke. A hullások 1,2%-a kő-vas meteorit, tehát nagyon ritka. A kisbolygó méretű test köpeny-mag határáról származhatnak ezek a meteorit minták. A két fő alkotó ásvány, fémes vas-nikkel és az olivin. Mellettük kisebb mennyiségben tartalmaznak még schreiberzitet, troilitet és foszfátokat is.

A család másik tagja a mezosziderit. Szintén fele részt fémes nikkel-vas ötvözetből, és fele részt szilikát összetevőkből áll. A szilikátos részben főleg olivint, piroxént és Ca-ban gazdag földpátot találunk. A mezoszideritek breccsásak. A legnagyobb különbség a pallazit és a mezosziderit között az, hogy a pallazit esetében a fém mátrixban van a szilikátos anyag, addig a mezoszideritben a szilikátos mátrix foglal magába kisebb-nagyobb fémszemcséket.

Mezoszideritből is találtak jó nagy darabokat. Például a Vaca Muerta, amely a chilei Atacama-sivatagban hullott és 1861-ben találták meg. A sok töredék össztömege 3,83 tonna volt egy nagy kiterjedésű szórásmezőben. De most maradjunk a pallazitnál.

Tehát, 1856-ban Dr. John Evans jelentette, hogy egy Oregon állambeli (USA) Port Orford nevű helység közelében egy közel 10 tonnára (22 00 font súlyra) becsült pallazit meteoritra bukkant, és egy darabkát az US Geological Survey (Földtani hivatal) előtt be is mutatott.

Dr. John Evans a megtalálás helyének a Kopasz-hegyet jelölte meg, és elmondása szerint a meteorit kiálló része körülbelül öt lábnyira a talaj fölé nyúlt.

Biztos ami biztos, Evans úr hangsúlyozta, hogy a pallazit az egyik legdrágább meteorit típus és a 10 tonnás tömeg miatt még egyedibbé teszi az anyagot, árát 300 millió akkori dollárra becsülték.

Az USA Kongresszusa utasította a Belügyi hivatalt, hogy a “Port Orford” meteorit felkutatásához és elszállításához a szükséges költségeket biztosítsa. Jól alakultak a dolgok Evans úr szempontjából.

A kiszivárgott információk és találgatások feltüzelték a kincsvadászokat, viszont vitát váltott ki a geológusok és a csillagászok között. Emiatt a kongresszus késlekedve különített el pénzt a begyűjtésre. Ezt Dr. Evans már nem élhette meg, mert 1861. április 13-án meghalt tüdőgyulladásban. Viszont mivel nagy pénzre számított, ezért titkolózott. Halála után átkutatták a hagyatékát és nem találtak olyan térképet amely részletesen meghatározta volna a „megtalálás” helyét. Ekkor vizsgálni kezdték Dr. Evans kutatási jegyzőkönyveit.

Dr. Evans kutatásai a Csendes-óceán északnyugati részén lévő Smithsonian Intézet birtokában vannak. A releváns bejegyzések az “Útvonal a Port Orford-tól a Rogue River-hegységig” cím alatt találhatóak, amely túl általános és félrevezető helymeghatározás csupán. Naplóbejegyzései szerint Dr. Evans észak felé haladt, és soha nem lépte át a szakadékot a Rogue River folyó felett.

Dr. Evans 1856. július 18-án Port Orfordból indult el, és útja július 31-én a Willamette-folyó partjainál végződött. Naplójában nem említi különösebben a meteoritot, mert nem volt tudatában a találásának természetéről. Ugyanakkor kitért a “kopasz hegyre”.

A mintát vizsgáló Mr. Jackson emlékeztetett arra, Evans elmondása szerint, a helyszín körülbelül negyven mérföldre van a Port Orford-tól a Bald Mountain tetején. A kopasz hegység, mint Dr. Evans leírta, magasabb, mint a környező hegyek és könnyen látható az óceánról.

1929-ben, majd 1939-ben a Smithsonian Intézet feltáró expedíciókat szervezett, de semmit sem talált, még nyomokat sem. Számos kopasz hegy van a környéken; az egyik délkeletre Port Orford-tól, egy van Coos megyében, és egy kék kopasz hegy a Rogue folyó környékén. Voltak, akik szerint az Iron Mountain, és a Barklow Mountain, estleg Bray Mountain vagy a Granite Peak lehetett. De soha nem talált senki semmit.

Ezért a mintát újra vizsgálták és összetételében és izotópjaiban egyezést mutatott az Imilac néven nevezett pallazittal. Az Imilac pallazitot 1822-ben találták Chilében az Atacama sivatagban TKW: 920 kg (teljes ismert tömeg). Összetétele: 90% Fe , 9,9% Ni , 21,1 ppm Ga , 46,0 ppm Ge , 0,071 ppm Ir.

Később talajmintákat gyűjtöttek a feltételezett helyekről de az az érzékeny proton-magnetométerekkel végzett mérések nem igazolták, hogy jelentős meteorit becsapódás történt volna a környéken.

Tehát, a trükk nem hozott gazdagságot Evans úr számára, mert előre nem fizetett senki a mesés kincsért, ha még életében kiderül a csalás, valószínűleg börtön várt volna rá…

A másik történet magyar származású!

A híres Kén utcai meteorit

Bár inkább hírhedtnek kellene nevezni! Az 1960-as években elhíresült, mert a televízióban is publicitást kapott. Akkoriban nagyon népszerű volt dr. Öveges József. Hetenként szerepelt fizikai tárgyú előadásokkal, kísérletekkel a tévében. Történt, hogy az egyik Kén utcai üzemben (Bp. IX. ker, a Gubacsi utat keresztezi) két fiatal munkás láng-hegesztővel dolgozott. Észrevették, hogy egy udvaron fekvő kő darab a forró gázlángban olvadozni kezdett, olyan felszíni olvadék folyás mutatkozik, mint egyes meteoritokon. Ezt onnan tudták, hogy a gyárban dolgozott egy idősebb művezető, aki rendszeresen olvasgatta az ismeretterjesztő cikkeket, nézte a TV-adásokat, és kiselőadásokat tartott a munkatársaknak, pl. a meteoritokról is.

“No, megtréfáljuk Jani bácsit!” – gondolták, és az olvadékony követ felhevítették. Amikor olyan “meteorit-szerű” lett, amit a művezető elmondása alapján gondoltak, lelkendezve oda vitték Jani bácsihoz. Elmondták, hogy valami süvítést és puffanást hallottak, és ezt a követ találták az udvaron, “még forró is”. Az öreg fellelkesült, azonnal elvitte a “meteoritot” a széles körben ismert Öveges professzornak, aki pedig a tv-híradóba is bemutatta! Nagy lett a felhajtás! Viszont a tévéseknek eszébe jutott, hogy egy hiteles, „űrügyekben” is szakértőnek kellene nyilatkozni. Felkérték hát dr. Kulin Györgyöt. Kulin pedig azonnal gyanút fogott, mert a kődarab nagyon könnyű (kis sűrűségű) és nagyon “mészkőszerű” volt. Elővette hát a két ifjú hegesztő-munkást, elkezdte faggatni őket, és azt is megígérte, hogy ha elmondják a valóságot, nem lesz bajuk. Így vallották be, hogy bizony csak tréfa volt az egész, maguk sem gondolták, hogy ennyire komolyra fordul a dolog.

A tanulság az, hogy mindig szakértőknek kell megmutatni a mintát, mert a lelkesedés átragadhat a méltán híres, köztiszteletben álló, de más tudományokban jeleskedőkre is.

Forrás:

1, The Port Orford Meteorite: It Wasn’t a Big Hoax by JD Adams

2, Kén utcai meteorit; Külön köszönet Bartha Lajos barátomnak aki megosztotta ezt a történetet velem!

Történelmi magyar meteoritok nyomában – Kabán

A Meteoritkráter Expedíció csapatának “fele”, Rezsabek Levente és Nándor, kiegészülve a helyi nevezetességeket jól ismerő Bagosiné Mária Tanárnővel, valamint a Planetology.hu felelős szerkesztőjével, Kovács Gergővel, folytatta a történelmi magyar meteoritok hullási/találási helyszíneinek bejárását: augusztus 5-én a kabai meteorit hullási helyét, illetve a város központjában lévő emlékművet látogatta meg.


Kovács Gergő és Rezsabek Nándor, a szerkesztők.

Az 1857-ben hullott Kaba főtömegét a közeli Debrecenben, a Református Kollégiumban őrzik. A CV3 típusú, 3 kg-nyi kőmeteoritban elsőként mutattak ki szerves anyagokat.


A hullás helyén található emlékmű.

A csapat a közeli Bárándról indulva, Kabán Mária Tanárnő jóvoltából kávé, sütemény, szilvaszedés után kereste fel a hullás helyén, valamint a város központjában álló emlékművet.


Emlékmű a település központjában.

Megnézte a meteorit nevét őrző egyesület sporttelepet, továbbá a magát a kabai meteorittal népszerűsítő chiliszószt árusító boltot.


A nevében a meteoritra utaló helyi sportegyesület.

Kétségtelen, Kaba valamennyi történelmi meteoritot magáénak tudó település közül az, amely leginkább őrzi a tudománytörténeti esemény emlékét.

Szerző: Rezsabek Nándor

Megtekinthető a Meteoritkráter Expedíció lengyelországi kisfilmje!

Meteoritkráter-ősbemutató – elkészült, és a legnagyobb videomegosztó portálon megtekinthető (s osztható!) a lengyelországi Metoritkráter Expedíció Morasko 2018 kisfilmje!

(A hangulatos zenéért külön köszönet Jánosi Szabolcsnak, a Nomad gitárosának, valamint a Keytracks Hungary Nonprofit Kft.-nek.)

Elérhető a következő linken:

Eredményesen zárult a lengyelországi Metoritkráter Expedíció

Eredményesen zárult a július 1-3. közötti lengyelországi Metoritkráter Expedíció (Morasko 2018).

A környezettudományi szemléletű, felszínalaktani, hidrobiológiai, állat- és növénytani, valamint kultúrtörténeti adatgyűjtés sikeres volt. Ezek feldolgozása és összefoglalása a nyár feladata. Az épségben hazaérkező két mérnökből – környezettan szakos hallgatóból (Makai Z., Rezsabek N.), továbbá a méréseket és a dokumentálást segítő két kísérőből (Makai M., Rezsabek L.) álló csapatnak a Poznańhoz tartozó Morasko impakt krátereinél végzett vizsgálati eredményeivel szakmai és népszerűsítő előadásokban, szakdolgozati keretben, ismeretterjesztő cikkekben, továbbá egy kis videóban találkozhatnak az érdeklődők.


(Forrás: Google)

Szerző: Rezsabek Nándor

Kormos Balázs: Egy különleges holdi meteorit nyomában

Szeretném veletek megosztani eddigi legkülönlegesebb holdi meteoritom legszebb darabját. Korábban volt róla szó, hogy bizony ezek a holdi eredetű kőzetek, (melyek meteoritként érkeztek a Földre) tartalmazhatnak Fe-Ni-t. Arról is szó volt, hogy a Fe-Ni szemcsék a Holdba becsapódó meteoritok darabjai, melyek belekerültek az ütközési olvadékba,ahogy nyilván más litológiai klasztok is így kerültek ebbe a gyönyörű földpátos breccsába (és egyéb holdi meteoritokba).

Úgy tudom, hogy az NWA5000 600 millió éven át különböző becsapódásoknak és hőmérsékleti változásoknak kitéve alakult szépen lassan, (ez egyébként meglepően kevés idő) amikor is egy nagy becsapódás megadta neki a kezdő lökést felénk.

Az NWA5000 egy komplex Hold felföldi breccsa, melyekben igen nagy mértékben található leukogabbró törmelék. A leukogabbró tartalmaz anortitot és pigeonitot. A pigonit egy rendkívül érdekes ásvány, mely monoklin kristályrendszerrel rendelkezik, valamint a piroxén csoportok tagja. Úgy tudom, hogy a gyors lehűlésre utal ez az ásvány.

Viszont ugorjunk vissza mondandóm elejére. Nem utolsó sorban a fentebb említett Fe-Ni szemcsék közül egyet be is mutatok számotokra. Úgy tudom NWA5000-ből származó Fe-Ni fotó most kerül közzé elsőként hazai gyűjteményből. Végszóként ez a legszebb holdi meteorit, amit valaha láttam.

Dénes Lajos: A kézzelfogható űr

Meteoritekről akarok írni, arról, hogy miért érdekesek számomra. Mindenki magából indul ki, így én is. Amikor megvettem az első példányaimat, mindent tudni akartam róluk. Hol, mikor hullott, mennyit találtak belőle, milyen a típusa, mennyit ér…

Később megnyugszik az ember és más is érdekelni kezdi. Hogyan jöttek létre? Milyen anyagokból, ásványokból állnak? Hogyan állapítják meg a származásukat, a korukat, az alkotórészeiket? Ezek az űrből jött kövek mennyire jellemzőek csak a Naprendszerünkre? Máshol is ilyen testek keletkeznek? Még hosszan tudnám folytatni a kérdéseket, amik felmerültek bennem.

További kérdések helyett viszont inkább azokat a válaszokat írom le, amiket tanulmányaim során találtam az adott téma kapcsán. A cikk olvasásakor úgy tűnhet, hogy felugrom a fa tetejére és lefelé mászok, hogy elérjem a fatörzsét, de én ezt úgy látom, hogy először kikészítem a szálakat, amikből később erős kötelet verek.

Manapság divat mindent az Ősrobbanástól vagy a régi görögöktől kezdeni, én mégis csak a második generációs csillagok, pontosabban ilyen típusú naprendszerek kialakulásától kezdem és a terjedelem miatt nagy lépéseket teszek majd.

Talán meglepő, de a Naprendszer kialakulásának helytálló leírása a 18. században született. Két úriember egymástól függetlenül (Immanuel Kant – Naturgeschichte und Theorie des Himmels (1755); Pierre-Simon Laplace Exposition du systeme du monde (1795)) dolgozta ki, de ugyanarra a megállapításra jutottak, az utókor pedig az elméletet Kant-Laplace nebula/ősköd elméletnek nevezte el.

Az elmélet szerint egy forró gázködből jött létre a Naprendszer, amely a gravitáció miatt zsugorodott és hűlt. Idővel egyre gyorsabban forgott és gömb alakúvá vált. A centrifugális erő miatt a gömbből korong lett, a korongról pedig övek váltak le és ezekből bolygók keletkeztek, a központi anyagból pedig a Nap lett.

A ma elfogadott elmélet szerint a második generációs naprendszerek olyan gázfelhőből alakulnak ki, amelyben a hidrogénen és héliumon kívül már szinte minden elem jelen van. Ennek oka az, hogy csillagászati léptékkel számítva egy közeli szupernóva-robbanás által létrejött nehezebb elemek keveredtek a gázfelhőbe. A Naprendszerünk kialakulásakor biztosan bekeveredtek a kezdeti nebulába még egy vörös óriáscsillag levetett planetáris ködében lévő nehezebb elemek is. Ezt arra alapozzák a kutatók, hogy például a Murchison vagy az Orgueil meteoritokban található óriás grafitszemcsék kialakulása a vörös óriásokra jellemzőek.

A fenti ábrán az látható, hogy a Naprendszerhez hasonló rendszer egy 100 csillagászati egység méretű korongból alakult ki. A felső, kék intervallumok mutatják a mérésekhez használt eszközöket, lent a korongot alkotó anyag állapotát illetve a sugárzási jellemzőit. [1]

Tudom, hogy a Naprendszerben élet és halál ura a Nap, de én most csak a szilárd anyagok kialakulásával szeretnék foglalkozni. Tehát adott pár tízezernyi atom/cm³ gáz- és poranyag, amiből kialakul egy fiatal csillag és bolygórendszer, valamint az aszteroidák, üstökösök és minden más.

A fentiekből már kiderült, hogy a hidrogén és hélium felhőbe belekeveredtek nehezebb elemek egy közeli szupernóva robbanása miatt. A szilárd elemek szemcsemérete mikronnál kisebb, nagyjából a cigarettafüst koromszemcséivel hasonlatos. [2]

Ezt a gáz- és porkeveréket a Naprendszer esetében 6 milliárd évesre becsülik, a mai elnevezése pedig „korong”.

Új szál:

Jó lenne tudni, hogy hogyan jöhetnek létre struktúrák! Elnézést kérek azoktól, akik számára ez evidens, de nem egy kémialaborban vagyunk, ahol egy kémcsőben kevergetünk mindenféle elemeket és majdcsak lesz valami belőle. Szerintem nem triviális az, hogy az űrben, gyakorlatilag vákuumban magától kialakuljon valamilyen ásványalkotó molekulalánc. Ebben talán nagy szerepet játszik a mindent átjáró kozmikus sugárzás, ami létrehozhat az atomokból ionokat és akkor szerencsés esetben molekulák, szilikátos alkotórészek, vegyületek is létrejöhetnek, bár ez inkább a gáz és porkorong sűrűsödésekor lesz inkább jellemző.

Csillagkeletkezési helyeken (NGC 2070 és M 42) sikerült spektroszkópiai méréssel kimutatni a H3+ (Ejtsd: H 3 plusz) , azaz háromcentrumú kötéssel kötött hidrogén magokat (protonokat) amelyeknek csupán két elektronja van. Ez a leggyakoribb ion az univerzumban és nagyon reagens. Rengeteg vegyület kialakulását vezették le a H3+ -ból.


Vegyületek keletkezése születő naprendszerekben [3]

A korongban lévő turbulenciák miatt, a statikus elektromos töltöttség vonzása okán, vagy a mágneses tér erővonalai mentén, a kialakulóban lévő csillag rendszertelen kitörései hatására kerülhetnek elemek egymás közelébe és az agresszív töltött részecskék kapcsolódhatnak velük.

A csillaggá összehúzódó kozmikus por- és gázköd fölmelegedett, központi forró tartományai létrehozták a Napot, a keringő ködből pedig anyagcsomók váltak ki, azok megformálták a Naprendszer ásványait, melyek aztán ütközésekkel fokozatosan nagyobb égitestekké halmozódtak. A Nap körüli por- és gázköd anyagát kétféle erő halmozta nagyobb testekké. Az egyik erő az elektromágneses és kvantumos hatások együttese, amely ásványszemcséket hozott létre. Apró szemcsékben kristályok váltak ki, melyek az ütközések során összetapadtak, és egyre nagyobb anyaghalmazokká álltak össze. A másik erő, a gravitáció, mely fokozatosan jutott szervező szerephez a bolygók kialakulása során. [4] [5]


Bolygócsírák kialakulása a szoláris ősködben (Bérczi és Lukács, 2001) [10] 

Az összehúzódást valószínűleg egy „közeli” csillag felrobbanása indította el, amely mint csillagszél elkezdte mozgatni a viszonylag homogén elrendezésű gáz és por elegyet. Az általa szállított nehezebb elemek bekeveredése kis csomókat hozhatott létre. Ez a folyamat kb. 4,7 milliárd évvel ezelőtt kezdődött. A felhőben lévő kis csomósodások növekedni kezdtek, összetapadtak, a gravitáció vagy statikus feltöltődés miatt is vonzhatták egymást. Majd hógolyószerűen növekedni kezdtek.  Ebben a forgó, korong alakú felhőben lezajló folyamatok határozták meg a Naprendszer égitesteinek tulajdonságait, így a mozgásukat, az anyagi összetételüket és az ettől függő felszíni alakzataikat is. Az ún. Lewis-Barshay-féle modell szerint a kondenzációs folyamatokat és az anyagi összetételt nagyban befolyásolta a Naptól való távolság.


A Lewis-Barshey-féle modell [6]

A Lewis-Barshay-féle modell szerint a fő kőzetalkotó szilikátok alkották a belső bolygók övében kiváló ásványok nagy részét. Ezek olvadékcseppeket alkottak egykor, mert a korai Nap kitörései egyes tartományokban úgy fölforrósították a por- és gázködöt, hogy az addig már kialakult és összetapadt kristályok megolvadtak, majd lehűltek. A 0,1-1 milliméteres nagyságú gömböcskékre (ezek a kondrumok), fokozatosan tapadt rá a körülöttük található por is. A kondrumok és a maradék poranyag összetapadással és ütközésekkel ez egyre nagyobb égitestekké halmozódott.

A Naphoz közel, forró tartományokban kiváló ásványok [6]

Az egykor megolvadt cseppek fokozatosan kihűltek, kikristályosodtak. Ezeket az ásványokat találhatjuk meg a bolygók, törpebolygók, kisbolygók, aszteroidák stb. anyagában. Az alkotórészek azonosak, de a történetük más és más, attól függően, hogy melyik égitest kialakulásában vettek részt.


Az EX Lupi rendszer kitörése [7][8]

Ma a kutatók nagyon sok születő vagy fiatal naprendszert figyelnek folyamatosan.

Ilyen megfigyelt naprendszer az EX Lupi rendszer amely 2008-ban egy kitörés alkalmával 5 magnitúdóval lett fényesebb, ez százszoros fényesedést jelent. Sikeresen pályáztak a Spitzer űrtávcső mérésre és azt sikerült 10 μm infra színképelemzéssel kimérni, és a pár évvel korábbi mérés összehasonlításával megállapítani, hogy az eddig amorf szilikátos anyag a kitörés hatására megolvadt és kikristályosodott. A spektrumot összehasonlítva a földi kalibrációs mérésekkel, olivin kristályok kialakulását figyelték meg. A megfigyelésben két magyar kutatócsapat is részt vett és közösen publikálták az eredményt. (Nature 2009) [7][8]

Még egy szál, hogy kötelünk erősebb legyen!

Az ős-Napban meginduló magfúziós folyamat jelentősen felfűtötte a felhő központi részét. A szoláris köd belső vidékeiről a gázok, illetve a porszemcsékből felszabaduló illékony anyagok a Napból áramló részecskesugárzás, a napszél segítségével a külső területekre kerültek. A belső bolygókezdemények, bolygócsírák összeállásában főleg szilárd szemcsék vettek részt. Távolabb, ahol elég hideg volt a víz kicsapódásához, a vízjég-szemcsék száma ugrásszerűen megnőtt. Az ennél távolabbi tartományban már a víz is részt vett a planetezimálok felépítésében.

Catherine Walsh (Leiden University) munkája, a rajzon egy, a szilikát-öv és a jég-öv határán lévő szemcsét láthatunk [2].

Számomra a legizgalmasabb terület! A szilikátos magnak, ami akár szenet is tartalmazhat, sőt akár szénszemcse is lehet, hasonló szerepe van, mint az esőcseppek kondenzációs magjának. A jég körbeöleli a magot, és itt már elindul a kémia! Bonyolult molekulák jöhetnek létre. Látható, hogy a szemcse mérete már ellenáll a kozmikus sugárzásnak, ezalatt azt értem, hogy az eltalált, átalakult vagy gerjesztett atom vagy molekula megmarad a szemcsében, további reakciókra alkalmas állapotban. Persze, lehet hogy pár molekula elszublimál, hiszen alig van gravitációs hatása egy ilyen szemcsének, de ez már akkor is egy struktúra, ami tovább fejlődhet…


A fősorozat előtti csillagok vázlatos szerkezete [9]

A szoláris ködből jelentős mennyiségű gázt csak az óriásbolygók tudtak magukhoz kötni, de azok is csak az összeállás későbbi fázisában, amikor már kellően nagyméretű és gravitációjú maggal rendelkeztek. A gázbolygók nagy kiterjedésű légköre azért tudott megmaradni, mert a Naptól távol alacsonyabb a hőmérséklet, emiatt kisebb a gázok hőmozgása, továbbá a napszél ereje is gyengébb.

Később a bolygócsírák további növekedésében már nem a por- és gázgyűjtés jelentette a fő szerepet, hanem az egymással való összeütközés és összeolvadás.

Sok szálunk van már, ideje pár olyan szálat is beszőni, amik gyengítik a kötelünket, nehogy elbízzuk magunkat.

Az első nagy probléma az, hogy hatalmas változásnak kell bekövetkeznie ahhoz, hogy a korongból csillag születhessen.


Fentről lefelé: a részecskék száma, hőmérséklet, kiterjedés, a mágneses tér változása, a forgás sebessége. [2]

Az akkréció problémája abból áll, hogy hogyan veszíti el a perdületét a korong anyaga, miért hullik a születő protocsillag felületére? Arról van szó, hogy kb. 5 AU kiterjedésű koronganyag bespirálozzon és létrehozza a Napot, ahhoz a perdületének az 50-ed részére kell csökkennie.

A perdület-megmaradás miatt valaminek el kell vinnie a többlet-perdületet, de mi? Súrlódás a korongon belül? Ne feledjük, a korong sűrűsége földi léptékben mérve nagyon jó vákuum. A korongban vannak turbulenciák? Lehet, és az a részecske, ami elviszi a másik perdületét az majd távolodni fog, az anyag „időt nyer”, hogy bolygó anyaga lehessen, és ne hulljon be a protocsillagba. Ma ez a legelfogadottabb elmélet.

A por lecsatolódása azt a problémát jelenti, hogy laboratóriumi kísérletek alapján, ha poranyag ütközik, akkor a legvalószínűbb az, hogy a szemcsék összetapadnak. Magam is láttam egy filmet, ami egy ISS kísérletet mutatott be. Az űrhajós kevés sót és cukrot szórt egy nylonzacskóba, kissé felfújta a zacskót, majd megrázta, hogy a por keveredjen és láss csodát a cukor és só szemcsék összetapadtak! Fontos információt adott, hogy az űrhajósok úgy kávéznak és teáznak, hogy egy erősebb zacskóban víz van, benne a kávé őrlemény vagy a teafű. Ezt megmikrózzák majd erősen összerázzák, ha kész, a kupakot lecsavarják és egy beépített szűrőn keresztül kiszívják. Nos, egy ilyen tasakot kicsit összeráztak, a teafű lassan, de határozottan csomósodott. De amikor a kísérletező az ujjával erősen megdörzsölte a zacskót a folyamat hirtelen felgyorsult, nyilván a statikus töltődés hatására.


Egy kép az ISS-en történt kísérletről [Youtube]

Viszont, ha a kis porgömböcskék elérik a kb. egy centiméteres határt, a modellek szerint, akkor már nem tapadnak össze, hanem elpattannak egymástól. Ez viszont baj! Talán a statikus töltődés segít összetartani a nagyobb cseppeket, vagy a nagyobbakhoz előbb kisebbek tapadnak? Esetleg, por vagy távolabb már a jég? Ki tudja? Az is igaz, hogy a centis gömböcskék már kezdenek a Kepler pályára állni, tehát az ütközési sebesség sok esetben nagyon alacsony, de rugalmas ütközés esetén az űrben el kellene pattanniuk. Szerencsére nem teszik mindig!

Messzire azonban nem jutunk, mert itt a következő akadály.

Az “egy méteres határ”-probléma abból áll, hogy amikor a test már ekkora, teljesen lecsatolódik a gáztól. Tehát, ha a gáz valamiért mozogni, örvényleni kezd, például egy korai napkitörés miatt, a test erre már nem reagál, hanem átcsörtet a gázon. Igen ám, de akkor súrlódik! Tehát a test, a Kepler törvények által meghatározott pályán kering, a gázrészecskék viszont a nyomásváltozásokra való tekintettel akár lassabban is keringhetnek, mint azt az adott pálya megkövetelné, vagy akár „keresztbe” mozdulhat pályáján a születő csillag körül. Így viszont egy kvázi közegellenállást jelent a már tömör testnek, aminek pár tízezer év alatt illene belehullania a fiatal csillagba.

Kibúvót két elmélet is adhat, persze lehet, hogy a kettő hatása együtt jelentkezik…

Az elsőt az támasztja alá, hogy fiatal, születő naprendszereknél láttak spirálkarokat a korongon belül. A por és gáz keverék, bár ritka, de mégis van nyomása, hőmérséklete, ezen nyomásgradiensek  eredője létrehozhat nyomás maximumokat, ami lassíthatja a sziklák bespirálozódását. Tehát, ha van belső szerkezete a korongnak, márpedig több (főleg ALMA mérés) szerint van ilyen, akkor ez kissé megtarthatja az anyagot.

A második esetében az a teória, hogy a test nagyon gyorsan „hízik”. Minél nagyobb a test, az apró ütközések hatása kiegyenlíti egymást, a test igyekszik tisztára söpörni a pályáját és így már megmarad.

A probléma feloldását próbálja megmutatni a következő két ábra [2]:

Még két információ. Minden elmélet szerint, a bolygóképződésnek nagyon gyorsan kell bekövetkeznie! Csillagászatban ez pár tízezer évet jelen csupán. A másik az, hogy nagyon nagy korongból keletkező csillagoknak, kevés bolygója lehet. Két Nap-tömegnyi anyag már olyan gyorsan húzódhat össze, hogy nem marad anyag a bolygók létrejöttéhez. De ez nagyon vékony jég, nem megállapítás, csak egy vélemény a sok közül.

A bolygócsírákból, planetezimálokból száz darab körüli becslések a legelfogadottabbak.

A nagyobb testek gravitációs hatása zavarja, perturbálja egymás pályáját, vagy ütköznek, vagy szerencsés esetben a megfelelő rezonancia pályákra kerülnek, így megmaradnak.


Korai Naprendszerünk egy fantáziarajzon [Forrás]

Ennyit szerettem volna, ha valaki azt hiszi, hogy nem is a meteoritekről írtam, akkor az téved! Minden test potenciális meteoroid, csak a méretétől függően másként nevezik, de ha egy darabkája eléri a Föld légkörét, akkor meteorrá válik, és ha eléri a Föld, vagy más égitest felszínét, és meg is találjuk, akkor már meteorit lesz a neve! Szerencsés ember az, aki kezében tarthat egy darabot a világűrből. Én szerencsés vagyok. Köszönöm!

 

Források:

[1] Kóspál Ágnes: ESA / MTA CSFK CSI – Csillagkörüli korongok dinamikája, Fiatal Csillagász és Asztrofizikus Kutatók Találkozója 2014

[2] Ábrahám Péter: MTA CsFK Konkoly Thege Miklós Csillagászati Intézet – Miért olyanok a  bolygórendszerek? Atomcsill, 2016. (http://atomcsill.elte.hu/letoltes/foliak/12_evf/atomcsill_12_06_Abraham_Peter.pdf)

[3] Szidarovszky Tamás: ELTE TTK Kémiai Intézet -Analysis of the Rotational-Vibrational States   of the Molecular Ion H3+

[4] Lukács Béla: MTA – Lukács Béla

[5] Bérczi Szaniszló: ELTE TTK KAVŰCS – Bolygótestek Atlasza 2001

[6] Bérczi Szaniszló: ELTE TTK Fizikai Intézet, Anyagfizikai Tanszék – A Naprendszer égitestjeinek fejlődése – Fizikai Szemle 2007/3. 88.o.

[7] Kóspál Ágnes: ESA / MTA CSFK CSI – Cold CO gas in the disk of the young eruptive star EX Lup

[8] Ábrahám Péter: MTA CsFK Konkoly Thege Miklós Csillagászati Intézet – Brightness variations of the FUor-type eruptive star V346 Nor ⋆

[9] Kun Mária: MTA Konkoly Thege Miklós Csillagászati Kutatóintézete – FIATAL CSILLAGOK ÉS KÖRNYEZETÜK KÖLCSÖNHATÁSAI Fizikai Szemle 2005/9.

[10] Gyollai Ildikó: MTA CSFK – TERMIKUS ÉS SOKKMETAMORF JELENSÉGEK EGY KIS ÉGITEST FEJLŐDÉSÉBEN A MAGYARORSZÁGI ÉS ANTARKTISZI METEORITOK PETROGRÁFIAI , RAMAN – ÉS INFRAVÖRÖS SPEKTROSZKÓPIÁS VIZSGÁLATA ALAPJÁN

[11] Dénes Lajos: – No mi a ménkű ez?!  http://mek.oszk.hu/14900/14919/#

A lodranit meteoritok forráségitestje

Szerző: Kormos Balázs

A lodranitok egy családba tartoznak az akapulkoit primitív akondrit meteorittípussal. A gyűjtők nagy kedvencei. De most egyelőre térjünk ki kizárólag a lodranitokra. Ez a típusú meteorit ugyebár szintén egy primitív akondrit. Fe-NI és szilikátos ásványok alkotják, főleg olivin és piroxén. Nevét az első ilyen típusú meteorithullásról kapta mely 1868. október 1-jén fényes nappal délután 2 órakor történt tanúk szeme láttára a pakisztáni, Lodhranban. Rendkívüli módon hasonlított a földi olivin bronzitokra a vas-nikkel (Fe-Ni) zárványokat leszámítva, valamint, hogy ilyen szépséges példányt még soha nem találtak a Föld nevű planétán.

A lodranit olyasmi, mint egy durvább szemcséjű akapulkoit és innen is a következtetés, hogy a forrás égitestjük azonos lehet. A főbb ásványai az alacsony mennyiségű kalcium piroxén és olivin, valamint plagioklász és troilit. Mellékesen találhatunk még benne például szulfidokat, foszfidot és krómot. Ezek tudatában és színképük alapján nagy valószínűséggel a lodranit és akapulkoit akondritok forrás égitetjei az S típusú kisbolygók. S és a C típusú kisbolygók voltak az elsőként viszonylag pontosabban leírt kisbolygók. Az S típusú kisbolygók mérsékleten fényesek, hasonlóan az M típusú fémes aszteroidákhoz. Az S típus annyit tesz, hogy silicaceous kisbolygó, ami egy szilikátos kompozitra utal. Az aszteroida öv 17%-át teszi ki ez a típus.

 

Egy ritka és különleges primitív akondrit, a szerző gyűjteményéből.

Tehát kicsit vissza ugorva mérsékleten fényes, fémes és magnézium szilikátos égitestek. Az aszteroida öv belső részében keringenek központi csillagunk körül. Legnagyobb képviselőik: (3) Juno, (29) Amphitrite, (7) Iris, (8) Flora, (9) Metis, (433) Eros, (532) Herculina és a (951) Gaspra. Ezek közül máris kiragadnék egy elég alaposan vizsgált és igen kellemetlen veszélyes pályán mozgó kisbolygót, az Erost. A (433) Eros egy Apollo-típusú kisbolygó (Apollo-Amor pontosabb megnevezésben) is egyben vagyis földközeli. 34,4×11,2×11,2 km a mérete. Ez a második legnagyobb földközeli aszteroida. 1898-ban fedezték fel. Sajnos megvan az esély rá, hogy találkozzon a Földdel, de ebbe talán jobb bele se gondolni. Hasonló mérető krátert ütne, mint a Chicxulub kráter, melyet ugyebár a dínók kihalásával együtt emlegetnek.

A (433) Eros (NASA) (1)

De maradjunk az űrben, és inkább legyünk az Eros felszínén. A NEAR-Shoemaker szonda látogatta meg az Erost kétszer is. Elsőként 1998-ban majd 2001. február 12-én bravúros manőverezéssel leszállt a felszínére. Rögtön ki is derült, hogy az Eros sűrűsége megegyezik a Föld kérgének sűrűségével. A NEAR-Shoemaker széles körben fotózta és térképezte fel a kisbolygót, ami nem volt éppen egyszerű az erősen változó gravitációs tényezők miatt. A végeredmény, ami jelen estben a legfontosabb számunkra, az aszteroidáról kidobódott törmelék forráshelye, mely egyetlen hatalmas becsapódási kráter. Éppen ezen okok miatt feltételezik (összesítve a tényeket: S és egyben Apollo-típusú, vagyis földközeli kisbolygó valamint a színképe alapján), hogy a lodranit meteoritok a (433) Erosról származnak.