Új nevet kapott az Ultima Thule

November 12-én a New Horizons űrszonda által meglátogatott 2014 MU69 jelű kisbolygó, ideiglenes elnevezésén az “Ultima Thule” új nevet kapott: ettől a naptól fogva Arrokoth-nak hívjuk, mely Powhatan (ejtsd: Póhatán) nyelven égboltot jelent.

Az Ultima Thule, új nevén az Arrokoth (NASA)

A NASA New Horizons csapata a Powhatan indián törzs vénjeinek és képviselőinek egyetértésével javasolta ezt az elnevezést az IAU (Nemzetközi Csillagászati Unió) és a Minor Planet Center (Kisbolygó Központ) számára.

A New Horizons pályája a Naprendszerben

Az újonnan felfedezett égitestek esetében fontos szerepet játszik az azokat felfedező műszer(ek) földrajzi elhelyezkedése, elég, ha a hawaii nevű ‘Oumuamua-ra gondolunk, melyet az adott szigetekre telepített műszerekkel találtak meg. Most sincs ez másként, az Arrokoth kisbolygót felfedező New Horizons irányítóközpontja ugyanis az USA Maryland államában található, ezen belül a Powhatan törzs területén.

Forrás: NASA

Üstökösök és felszínformáik

Szerző: Balogh Gábor

Az üstökösök megfigyelései több ezer évre nyúlnak vissza (1). A kínai üstökös-megfigyelések pontosságát csak a XV. században sikerült a nyugati világnak utolérnie. Több száz éves rajzok, leírások maradtak ránk, melyek üstökösöket ábrázolnak, a legkorábbi ie. 613-ból maradt ránk. Európában a legkorábbi ábrázolása 684-ből származik a Nürnbergi Krónikákból, valamint a híres Bayeux-i kárpiton is megjelenik, 1066-ban.

Üstökösök ábrázolása, ie. II. század, Hunan tartomány, Kína (2)

A pontos megfigyelések dacára, az üstökösök igazi természete rejtve maradt. Légköri jelenségeknek vélték őket, és – akárcsak Európában – rossz ómennek tekintették őket. Arisztotelész is úgy vélte, hogy nem csillagászati jelenségekről van szó, hanem az üstökösök az atmoszférában mozognak. Csak 1577-ben jött rá Tycho Brahe, hogy az üstökösök csillagászati jelenségek, hiszen a C/1577 V1 üstökös parallaxisát megmérve, egyértelművé vált, hogy az a bolygóközi térben mozog (3).

A csillagászok számára azonban még mindig távoli, ismeretlen „anyagcsomók” voltak, melyek közül sokak pályaelemeit jól ismertük, de összetételükre csak 1950-ben érkezett Fred Lawrence Whipple-től megfelelő modell, miszerint ezek az objektumok egyfajta „piszkos hógolyók” (4). Későbbi, űrszondákkal való megfigyelések igazolták azt a modellt (5).

De honnan is származnak az üstökösök? A Jupiter távolságánál található az úgynevezett jéghatár – ettől távolabb a jég megmarad, ettől közelebb a Nap felé, a jég szublimál. A Naprendszer kisbolygói és üstökösei, melyek nagy része a Naprendszer legősibb, eredeti anyagát képviselik, olyan „nyersanyag”, melyből a bolygók jöttek létre, kutatásuk ezért is nagy fontosságú. A Naphoz közelebbi régióban, a Jupiteren innen, a kisbolygóövben található a kisbolygók nagy része, az üstökösök viszont főleg a Kuiper-övből (rövid periódusú üstökösök) és az Oort-felhőből (hosszú periódusú üstökösök) származnak. Ezek a kis égitestek viszont migrálnak, geológiailag nincs éles különbség a kisbolygó és az üstökös között. Elméletileg tehát, az üstökösök nagyon porózus, jégből és porból álló égitestek, „piszkos hógolyók” – a kisbolygók pedig főként szilikátokból és fémből álló égitestek. A valóság azonban ennél bonyolultabb, hiszen e két „ideális” égitest között számtalan változat létezik. Vannak vizes kisbolygók, és léteznek kiszáradt üstökösök. A planetológiában ezért a „száraz vagy vizes planetezimál” kifejezést használjuk (6, 7).

A Giotto szonda 1986-ban 596 kilométerre közelítette meg a Halley üstököst, megmérve kiáramló anyagának az összetételét. Ekkor az üstökös mintegy három tonna anyagot lökött ki másodpercenként. Felszínének napsütötte oldalán mintegy 10%-a volt aktív. Területének nagy részét vastag, sötét porréteg borította (8).

A Stardust űrszonda 2004-ben suhant el a Wild 2 üstökös mellett, porszemcséket gyűjtve annak kómájából. 2006-ban juttatta vissza a földre a mintavevő egységét. Az elemzések sokféle szerves anyagot, köztük aminosavakat, valamint alifás vegyületeket találtak. A vas- és rézszulfidok jelenléte pedig a folyékony víz létét bizonyítja az üstökösön (9). A szonda 2011-ben 181 kilométerre a Tempel 1 üstökös mellett is elhaladt.

A Rosetta, és leszállóegysége a Phylae, 2014-ben ért a 67P/Churyumov–Gerasimenko üstököshöz. A mérések 16 féle szerves anyagot mutattak ki, négyet közülük itt először. Első ízben készültek képek egy üstökös felszínén (10).

67P/Churyumov–Gerasimenko üstökös valós színekben. Forrás: ESA/Rosetta

Az az idő egyre távolabbinak tűnik, amikor az üstökösök csak távoli „anyagcsomók” voltak a csillagászok számára. Eljött az a korszak, amikor az üstökösöket már geológus-szemmel is lehet vizsgálni.

A 10 kilométernél nagyobb üstökösök belsejében tehát folyékony víz lehetséges, melyet alumínium- és vas-izotópok bomlása melegít (11,12).

Egy üstökös felépítése. A szerző saját grafikája

Belseje nagy porozitású, szerkezetének 60-80%-a üreges, szenes kondrit (18) és jég alkotja. Napközelben felszíne felmelegszik, szublimációs folyamatok kezdődnek a Nap által megvilágított területeken. A kilökődött anyag porszemcsékből és gázokból áll, de megfigyeltek csak gázkibocsájtást is, tehát a felszín alatti részek összetétele és szerkezete helyenként változó.

A kilökődött anyag porszemcsékből és gázból áll. Forrás: ESA/Rosetta

Egyes területek hamar kigázosodnak, kialakul felettük egy kemény, 10-50 cm vastag poros, réteges, inaktív réteg (17). A hiányzó anyag miatt azonban ez a kéreg beszakadhat, ismét elindítva egy kigázosodási folyamatot. Napközelben, a felszín több métert is süllyedhet rövid idő alatt. A felszín aktív kürtők, beszakadások tagolják (13, 14).

Egy kétszáz méteres aktív kürtő. Forrás: ESA/Rosetta

Máshol, nyugodtabb területeken, napi jégciklust figyeltek meg. A 12 órás nap során, a helyi hajnalon, a felszíni jég szublimálni kezd. Délben, a néhány centiméteres mélységből is párologni kezd a jég, majd éjszaka, amikor a felszín gyorsan lehűl, az alatta levő rétegek viszont még melegek. Ezekből a rétegekből azonban folytatódik a párolgás felfelé, a hideg felszín felé, ahol is kifagy. Másnap, hajnalban, a szublimáció újra elkezdődik (16).

A napi jégciklus (16)

A Rosetta ottléte alatt számos változás történt az üstökös felszínén, különösen akkor, amikor az üstökös napközelben volt. Sima terepen kialakuló kör alakú mintázatok például napi néhány méterrel is nőttek. Az úgynevezett nyaki régióban, mely az üstökös két részét köti össze, törésvonalak jöttek létre, valamint több méteres sziklák vándoroltak csaknem 100 métert.

Törésvonal a nyaki régióban. Forrás: ESA/Rosetta
Egy 30 méteres szikla 140 métert mozdult el. Forrás: ESA/Rosetta

Megfigyelték az üstökös első csuszamlását is, amikor egy hatalmas sziklafal összeomlott, láthatóvá téve a mélyebben fekvő, frissebb, jégben gazdag rétegeket (15).

A földcsuszamlás láthatóvá tette a frissebb, mélyebben levő rétegeket,
melyek jégben gazdagabbak.
Forrás: ESA/Rosetta

Az egyik legváratlanabb felszíni formációt a Hapi régióban, a „nyakban” találták. Az üstökös és a napszél kölcsönhatásának egy érdekes jelét találták itt meg – eolikus hullámokat (19, 20, 21, 22), akárcsak a Földön, vagy a Marson. Természetesen, az üstökösökön nincsen olyan légkör, ami lehetővé tenné a porszemcsék szél általi szállítását, itt a napszél végzi el ezt a munkát.

Eolikus hullámok a nyaki régióban. Forrás: ESA/Rosetta

Források:

  1. Chinese Oracle Bones, Cambridge University Library.
    http://www.lib.cam.ac.uk/mulu/oracle.html
  2. China Arts, Volume 1st, Wen Wu Publishing, Beijing, China, 1979-10
  3. A Brief History of Comets I (until 1950). European Southern Observatory. http://www.eso.org/public/events/astro-evt/hale-bopp/comet-history-1.html
  4. Whipple, F. L. (1950). “A comet model. I. The acceleration of Comet Encke”. The Astrophysical Journal. 111: 375.
    https://ui.adsabs.harvard.edu/abs/1950ApJ…111..375W
  5. List of comets visited by spacecraft
    https://en.wikipedia.org/wiki/List_of_minor_planets_and_comets_visited_by_spacecraft#List_of_comets_visited_by_spacecraft
  6. Workshop From Dust to Planetesimals. https://web.archive.org/web/20060907075604/http://www.mpia.de/homes/fdtp/
  7. Planetesimals: Early Differentiation and Consequences for Planets. Linda T. Elkins-Tanton, Benjamin P. Weiss, 2017, ISBN 9781107118485
  8. J. A. M. McDonnell; et al. (15 May 1986). “Dust density and mass distribution near comet Halley from Giotto observations”. Nature. 321 (6067s): 338–341.
  9. LeBlanc, Cecile (7 April 2011). “Evidence for liquid water on the surface of Comet Wild 2”
    https://earthsky.org/space/evidence-for-liquid-water-on-the-surface-of-comet-wild-2
  10. “Europe’s Comet Chaser – Historic mission”
    http://www.esa.int/Science_Exploration/Space_Science/Rosetta/Europe_s_comet_chaser
  11. Pomeroy, Ross (March 2016). “Large Comets May Have Liquid Water Cores. Could They Contain Life?”. Real Clear Science.
  12. Bosiek Katharina, Hausmann Michael, and Hildenbrand Georg. “Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life.” Astrobiology. March 2016.
    https://doi.org/10.1089%2Fast.2015.1354
  13. Vincent, Jean-Baptiste; et al. (2 July 2015). “Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse”. Nature. 523 (7558): 63–66.
  14. Ritter, Malcolm (1 July 2015). “It’s the pits: Comet appears to have sinkholes, study says”. Associated Press.
    http://apnews.excite.com/article/20150701/us-sci–comet_sinkholes-11254d29fb.html
  15. Byrd, Deborah: Landslides and avalanches keep comets active.
    https://earthsky.org/space/landslides-avalanches-comet-67p-key-long-term-activity
  16. ESA’s Rosetta data reveals evidence for a daily water-ice cycle on and near the surface of comets https://phys.org/news/2015-09-esa-rosetta-reveals-evidence-daily.html
  17. Structure and elastic parameters of the near surface… https://www.sciencedirect.com/science/article/pii/S0019103517304165
  18. Chemistry of Organic Species in Comet 67P
    http://elementsmagazine.org/2018/04/16/rosetta-mission-organic-species-comet-67p/
  19. Eolikus folyamatok és formák
    https://www.studocu.com/en/document/szegedi-tudomanyegyetem/geomorfologia-foeloadas/past-exams/foeldrajz-bsc-allamvizsga-8-tetel-eolikus-folyamatok-es-formak/2369899/view
  20. Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko
    https://www.aanda.org/articles/aa/abs/2015/11/aa26049-15/aa26049-15.html
  21. Aeolian ripples in the Hapi region
    https://sci.esa.int/web/rosetta/-/56796-aeolian-ripples-in-the-hapi-region-osiris-nac
  22. Interaction of the solar wind with comets: a Rosetta perspective
    https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0256

Nem sikerült a Chandrayaan-2 Holdra szállása

Az Indiai Űrkutatási Szervezet (ISRO) Chandrayaan-2 leszállóegységének küldetése 2019. szeptember 6-án sikertelenül végződött. A Vikram nevű leszállóegység és a Pragyan nevű rover a magyar idő szerint késő estére tervezett leszállás során, körülbelül 2 kilométerre a holdfelszín fölött elvesztette a kapcsolatot a földi irányítóközponttal, és nagy eséllyel a Holdba csapódott.

A Chandrayaan-2. (ISRO)

A leszálló egységből érkezett adatok elemzése már folyamatban van, továbbá az ISRO szakemberei igyekeznek továbbra is felvenni a kapcsolatot a leszálló egységgel, abban a reményben, hogy az űrszondának sikerült a “puha” landolás. Emellett a továbbra is a Hold körül keringő Chandrayaan-2 is a leszállóegység nyomába ered. A landolás nyomon követte az irányítóközpontból Narendra Modi, az indiai miniszterelnök is.

Feszült percek az irányítóközpontban. (ISRO)

Ha a Vikram küldetése sikerrel járt volna, akkor az Egyesült Államok, Oroszország és Kína után India lett volna a negyedik olyan ország, melynek űrszondája leszáll égi kísérőnkre, ez az álom azonban meghiúsult. Így Izrael után egy újabb gazdasági-tudományos-műszaki nagyhatalomnak sem sikerült a Holdra letenni az űrszondáját, mely azt bizonyítja, hogy a Hold még mindig igen nehéz célpont, hát még a Mars!

A landolás közvetítését itt lehetett nyomon követni.

Elindult a Hold felé a Chandrayaan-2

Szerző: Planetology.hu

Bő egy hetes csúszást követően elindult égi kísérőnk felé az indiai Chandrayaan-2 űrszonda. Az űreszközt eredetileg július 14-én tervezték volna fellőni, egy műszaki hiba miatt azonban el kellett halasztani az indítást.

Az indítás pillanata. Fotó: ISRO
A tervezett leszállóhely. Fotó: ISRO

India második holdszondája a tervek szerint szeptember elején landol a Hold déli sarkvidékén.

Forrás: ISRO

Gyorshírek: Hamarosan indul a Chandrayaan-2!

Szerző: Planetology.hu

Indiai idő szerint hajnalban (azaz magyar idő szerint késő éjjel) indítják a Chandrayaan-2-t, az ország második holdszondáját égi kísérőnk felé.

A Chandrayaan-2. Fotó: ISRO

Az űrszonda három részből áll: a Hold felett 100 kilométer magasan keringő egységből, a Vikram (bátorság) nevű leszállóegységből, valamint a Pragyan (bölcsesség) nevű holdjáróból. Utóbbi kettő a Hold déli pólusának közelében fog landolni. Az űreszközök küldetésének legfontosabb része maga a technológia-demonstráció, de emellett a holdfelszín kémiai összetételét és a víz jelenlétét is vizsgálni fogják az indiai űreszközök.

Az élő közvetítést itt lehet nyomon követni.

Balogh Gábor: Beresheet a Holdon!

Eredetileg a Google által szponzorált és a „X Prize Foundation” által szervezett Google Lunar XPRIZE GLXP (1) versenyen induló versenyző csapatok egyike volt az izraeli SpaceIL (2). A díjat 2018-ban visszavonták, mert egyik csapat sem tudta teljesíteni a feltételeket (3), de a SpaceIL vállalat folytatta küldetését, a Holdra való leszállást. A projekt költségeit (100 millió dollár) néhány üzletember és alapítvány adta össze (4).

2019 januárjában, a végső teszteket elvégezve, elszállították a szondát Cape Canaveral-ra, hogy előkészítsék a SpaceX Falcon 9 rakétával való kilövésre. A sikeres kilövés 2019. február 22-én történt meg. A leszállóegység a Beresheet, „Kezdetben” nevet viseli, a Biblia Teremtés Könyvének első szaváról elnevezve. Tömege 150 kg, hajtóanyaggal 585 kg, mely monometilhidrazinból (MMH) és oxidálóanyagként nitrogénoxidokból (MON) áll. A hajtóanyag mintegy harmada a leszálláshoz szükséges.

A Beresheet leszállóegysége (5) Planetary Society, http://www.planetary.org/multimedia/planetary-radio/show/2019/0227-2019-yoav-landsman-spaceil.html

Hasznos terhe között van egy magnetométer, mely a holdi lokális mágneses mezőt méri majd, egy lézeres retroreflektor, mely a Föld-Hold távolság mérését segíti elő, valamint egy digitális időkapszula, melyben többek között az angol nyelvű Wikipédia egésze, egy Tóra, gyermekrajzok, Izrael himnusza, zászlója, valamint Izrael Függetlenségi Nyilatkozata található.

A 2019. február 22-i kilövés egy SpaceX Falcon 9 rakéta segítségével történt, egy Telecom PSN-6 műholddal együtt 0145 UTC-kor. Február 24-től március 29-ig négyszer gyújtották be a főhajtóművet, hogy a szonda pályájának legtávolabbi pontja, az apogeum, a holdpálya távolságában legyen.

Március 31-én, 16.000 km távolságból (6) Space.com: Israeli Moon Lander Tweaks Orbit to Prep for Thursday Lunar Arrival https://www.space.com/israel-moon-lander-maneuver-for-lunar-arrival.html

Egy hét további pályamódosítás után a szonda kör alakú pályára állt a Hold körül (7, 8).

Kép a Hold túlsó oldaláról, április 4-én. (8) Space.com: Israeli Lunar Lander Snaps Amazing Photos of the Far Side of the Moon https://www.space.com/israeli-lander-moon-far-side-photos.html

Április 10-én, egy további pályamódosítás következett, melynek során egy olyan elliptikus pályára tért a szonda, melynek holdközeli pontja, a periluna 15-17 km-re, legtávolabbi pontja, az epiluna 200 km-re volt a Hold felszínétől. E 32 másodperces pályamódosítás 5 kg hajtóanyag felhasználásával a Hold túlsó oldalán történt, közvetlen földi kapcsolat nélkül (9). A szonda legnagyobb sebessége 36.000 km/óra volt, összesen 6,5 millió kilométert tett meg (10, 11).

A megfelelő pontot elérve, április 11-én, közép-európai idő (CET) szerint 21:08-kor kezdte meg a leszállást.

Telemetria a leszállás megkezdésekor, 21:08 CET. Space.IL, https://www.youtube.com/watch?v=HMdUcchBYRA
Szelfi 20 km magasból, a leszállás folyamán, 21:20 CET. Space.IL, https://www.youtube.com/watch?v=HMdUcchBYRA

Közvetlenül ez után a főhajtómű leállt, ezt újra kellett indítani, magasságot veszítve. A NASA-val is többször megszakadt a kapcsolat. A leszállás sajnos a hajtómű hibája miatt nem sikerült, a szonda lezuhant.

A Beresheet tervezett leszállóhelye a Mare Serenitatis északi részén. A szerző saját képe

Szerző: Balogh Gábor

  1. Google Lunar X Prize (GLXP)
    https://lunar.xprize.org/prizes/google-lunar

  2. SpaceIL
    http://www.visit.spaceil.com/

  3. SG: Nem osztják ki a Google XPrize díját
    https://sg.hu/cikkek/tudomany/129428/nem-osztjak-ki-a-google-xprize-dijat

  4. About Our Major Donors
    http://www.spaceil.com/major-donors/

  5. Planetary Society
    http://www.planetary.org/multimedia/planetary-radio/show/2019/0227-2019-yoav-landsman-spaceil.html

  6. Space.com: Israeli Moon Lander Tweaks Orbit to Prep for Thursday Lunar Arrival
    https://www.space.com/israel-moon-lander-maneuver-for-lunar-arrival.html

  7. HyperPhysics: Circular Orbit
    http://hyperphysics.phy-astr.gsu.edu/hbase/orbv.html

  8. Space.com: Israeli Lunar Lander Snaps Amazing Photos of the Far Side of the Moon
    https://www.space.com/israeli-lander-moon-far-side-photos.html

  9. TeamSpaceIL Twitter
    https://twitter.com/TeamSpaceIL

  10. SpaceIL – Beresheet’s Journey to the Moon
    https://www.youtube.com/watch?v=_R4zk448oPs

  11. SpaceIL – Beresheet’s upcoming landing on the moon
    https://www.youtube.com/watch?v=VYd5vRjsfQE&

(Mit) üzen a Voyager?

„És ez mi akar lenni?”

– rajzoló bölcsiseknek ezerszer feltett kérdés.

Negyvenkét éve indítottuk útjára kozmikus palackpostaként a két Voyager űrszondán elhelyezett aranyozott lemezeket. Az összeállítók szándéka szerint ezek „minden kellőképpen fejlett technikai civilizáció számára” megfejthető és értelmezhető adatokat hordoznak a Földről, annak élővilágáról és az emberiségről. A szondák olyan pályára álltak, mely garantálja, hogy maguktól sohasem térnek vissza bolygórendszerünk vidékére.

Jól tudjuk, meglehetősen indokolatlan volna abban bíznunk, hogy célzott keresés nélkül valaki (bárki) valaha belefut egy 30 centiméter átmérőjű aranylemezbe egy 150 000 fényév átmérőjű galaxisban. Ez közelíti a „nulla valószínűségű, bár nem lehetetlen esemény” matematikai absztrakcióját. A felfedezés esélyein csak egy árnyalatnyit javít, hogy Carl Sagan csillagász szerint a lemezek egymilliárd évig lejátszhatóak lesznek még[1]. Ennyi idő alatt a Voyagerek nagyjából 50 000 fényévnyire juthatnak el.

Az esélytelenek nyugalmával játsszunk el mégis a gondolattal, hogy a nagyon távoli jövőben ráakad egy intelligens lény valamelyik Voyagerre. Még ha ez a valaki saját leszármazottunk lenne is, bizonyos, hogy a lelet számára ősi és „idegen” lesz: minden történelmi tapasztalatunkkal ellentétes volna azzal áltatni magunkat, hogy sokezer éves időskálán bármiféle hagyomány fennmaradhat a Voyagerekről vagy akár az őket létrehozó társadalomról.

A megtaláló elsőként talán azt fogja megvizsgálni, hogy a szerkezet képes-e önreprodukcióra. A gondolat őrültségnek tűnhet, de nem az: Neumann János elképzelése szerint lehetséges olyan replikátor-szerkezeteket konstruálni, melyek a számukra elérhető nyersanyagokból másolatokat építenek magukról, vagyis osztódnak. Az 1980-as évek óta komoly irodalma létezik annak az ötletnek, hogy így szaporodó, majd különböző bolygórendszerek felé szétágazva továbbutazó „Neumann-szondák” a galaxis feltérképezésének (meghódításának, belakásának) leghatékonyabb, leggyorsabb módját jelentenék[2]. A megtalálónak mint racionális lénynek az kell legyen az egyik első gondolata, hogy a Voyager is ilyen szerkezet. Véletlenül találkozni egyetlen magányos űrszondával ugyanis statisztikailag szinte kizárható, de egy évmilliók óta szaporodó, exponenciális ütemben növekvő szondapopuláció egyik tagjába belebotlani egyáltalán nem az. A Voyager azonban híján van az osztódás képességének, s ezt a megtaláló gyorsan észre is veszi majd. Viszont azt a forgatókönyvet, hogy az eszköz egy ilyen replikátor valamely elhagyott alrendszere („testrésze”) nem zárhatja ki, sőt logikusan következtethetne erre mint legvalószínűbb lehetőségre.

A következő lépésben a lelet anyagát fogja megvizsgálni. Kielemzi, hogy milyen vegyelütekből, izotópokból épül fel és mennyire viseltes a felülete, melyet folyamatosan rombolnak a különböző sugárzások és a rettenetesen ritka (de a sokmillió év alatt jelentős hatású) kozmikus porszemcsékkel való ütközések. Mindebből nagyságrendi becslést kaphat majd a szonda készülésének idejére. Észre fogja venni, hogy az eszköznek nincsen saját hajtóműve, vagyis szabadon zuhant hosszú útja során. Így az űrszonda sebességét és helyzetét ismerve visszaszámolhatja a pályáját az imént meghatározott kezdőpontig és némi szerencsével kikövetkeztetheti azt is, hogy a galaxis melyik vidékéről indulhatott (a „szerencse” azért kell, mert ilyen időléptékben a pálya kaotikussá is válhat).

Tovább vizsgálódva megállapíthatja az egyes részegységek funkcióját. Könnyen meg fogja érteni, hogy a rádióantenna, a termonukleáris áramforrás vagy a kamera mire való. De az eszköz mint kulturális termék rendeltetése ettől még rejtve marad előtte. Nem tudhatjuk, mennyire szükségszerű és mennyire egyedi magatartásforma, hogy kihelyezett elektronikus érzékszerveket küldünk az űrbe pusztán alapkutatási célból (és nem valamilyen közvetlen gazdasági, ipari, katonai, vallási ok miatt). Könnyen lehet, hogy az értelmes lények effajta kíváncsisága nem univerzális, hiszen az emberiségre is csak kevéssé jellemző. Analógia: ha egy ismeretlen roncsdarabot látunk az óceánon hánykolódni, majdnem biztosak lehetünk abban, hogy az egy kereskedelmi vagy hadászati célú eszköz maradványa és nem egy kutatóhajóé. Ráadásul az a tény is teljesen valószínűtlennek hat majd a térben és időben is távoli megtaláló szemszögéből, hogy a Voyager célja a felbocsátó földlakók saját bolygórendszerének felderítése volt. Elsodródott balatoni kutatóhajó a nyílt óceánon.

Jusson eszünkbe az is, hogy ősi emberi alkotások rendeltetése körül mennyi vita zajlik mindmáig. Technikailag érteni véljük például, hogy az angliai Amesbury közelében álló Stonehenge évezredekkel ezelőtt csillagászati obszervatóriumként működött, ez a sziklatömbök helyzetéből az 1960-as évekre világosan kiderült[3]. De az építmény tényleges kulturális kontextusa, célja, a kőkorszaki társadalom életében betöltött szerepe alighanem örökre rejtve marad. Ilyen távlatból tekintve a Voyager űrszonda is éppen ennyire talányos civilizációs produktumnak tűnhet fel, miközben technikai szinten megragadható némi mérnöki intuícióval. Leszámítva a lelet két kisebb elemét.

Képek forrása: NASA, Wikimedia Creative Commons

Az egyik egy kicsi 40 centiméteres polietilén-tereftalát szövetdarabka, melyet a szonda hő- és sugárzásvédő burkolata alá varrtak a készítők (ld. bal oldali képünk). Mi tudjuk, hogy a felületre felvitt festékanyagok a szondát létrehozó embercsoport törzsi jelképét rajzolják ki, de ennek megfejtését és a szokás (babona) megértését még a végtelenül intelligens földönkívüli megtalálótól sem várhatjuk el. A másik talányos darab pedig természetesen maga az aranylemez lesz. Ezt Carl Sagan és kollégái üzenetnek szánták és legjobb tudásuk szerint igyekeztek a lemez tokjára gravírozott rajzos útmutatókkal a megtaláló tudtára adni, hogy hol adták föl az üzenetet és miképpen kell elolvasni.

Nincsen közös nyelvünk a hipotetikus befogadóval és „közös élményanyagunk” is a matematikai és fizikai törvényekre korlátozódhat csupán (amennyiben ezeket univerzálisnak tekinthetjük). Ráadásul elképzelésünk sincs, hogy más intelligens lények hogyan, milyen csatornákon keresztül, milyen időbeli- és térbeli léptékben érzékelik a világot, s hogy hasonlóképpen absztrahálnak-e fogalmakat a megfigyeléseiből, mint mi. Mire vélnék például a használati utasítás jobb fölső képünkön látható részletét? Ez szerintünk az űrszonda stilizált ábrázolása volna a Naprendszer minimalista megjelenítésével, illetve a bolygók keringési síkját elhagyó repülési pálya szemléltetésével. A rajzolás célja általánosságban a környezet információtartalmának valamiféle „tömörítése”, s eredménye épp annyira jellemzi az emberi agyműködést, mint a valóságot. Így könnyen lehet, hogy a megtaláló ugyanazt az űrszondát teljesen másképpen érzékeli, és sohasem gondolna arra, hogy a kis szimbólum magára az eszközre utal. Az sem tudható, hogy az ő téridő-képzete vajon mit tud kezdeni azzal, hogy valamiféle bejárt útvonalat (pályát) egy folytonos vonallal jelölünk. Ezekben a kérdésekben nem látunk távolabb magunknál. Az pedig szinte biztosra vehető, hogy a pályarajzolat végén levő nyílhegy, mely irányt hivatott jelölni, teljesen értelmezhetetlen lesz számára[4]. Nekünk ősi örökségünk a nyíl szimbolika (középső kis képünkön például egy 5000 éves nyílhegyet látunk a mai Franciaország területéről), de nagyon valószínűtlen, hogy a galaxisban bárki más értené.

Felfedezőjének a Voyager-lemez hasonlóan rejtélyes lehet, mint az andoki civilizációk évezredeken át használt csomóírása, a quipu. Jobb alsó képünk egy inka quipu-leletet mutat, melyen minden zsinórnak és azokon minden csomónak jelentése van. Az európai hódítók sokáig csupán dekorációnak vélték e „könyveket”, föl sem merült bennük, hogy információt hordoznak. Később aztán bizonyítást nyert, hogy számok jelölésére, adattárolásra használták őket. De csak a közelmúltban vetődött föl gazdag leletanyag átvizsgálását követően, hogy a quipu talán valódi írás, mely binárisan kódolt nyelvi információt is hordozhat[5].

Vajon eljuthat egy ilyen merész gondolatig a megtaláló egyetlen Voyager-lemez alapján?

Szerző: Vincze Miklós

Források:

[1] Carl Sagan: Milliárdok és milliárdok, Akkord, Budapest, 2000

[2] “Extraterrestrial Beings Do Not Exist”, Quarterly Journal of the Royal Astronomical Society, vol. 21, number 267 (1981)

[3] Fred Hoyle: Stonehenge-től ​a modern kozmológiáig, Magvető, Budapest, 1978

[4] Ernst Gombrich ‘The Visual Image’, 1972 in: Scientific American, pp. 46–60;

[5] Gary Urton: Signs of the Inka Khipu: Binary Coding in the Andean Knotted-String Records. Austin, TX: University of Texas Press, 2003

Válaszúton a New Horizons

A korábban Pluto törpe-, majd év elején az Ultima Thule kisbolygó (elrepülő manőverrel történő) sikeres megfigyelése után válaszúton a New Horizons űrszonda. Sajnos a korábban tervezett 2014 PN70 és 2014 OS393 további Kuiper-övbéli aszteroidák elérésére műszaki és navigációs okokból nincs mód. Ráadásul kommunikációs hiba miatt az Ultima Thule fényképfelvételeinek és mérési eredményeinek is alig 1 százalékát sikerült eddig letöltenie a földi irányítóközpontnak.

A MU69 után a következő reális célpont 2021-ben lesz elérhető. De, hogy melyik Neptunuszon túli objektum (TNO) lesz, az egyelőre a jövő homályába vész…

Rezsabek Nándor

Forrás: Centauri Dreams

BREAKING: leszállt a Csang’e-4 a Hold túlsó oldalára

Sikeresen leszállt a Hold túlsó oldalára a kínai Csang’e-4 űrszonda, pekingi idő szerint 10:26-kor, jelentette be a Kínai Nemzeti Űrügynökség (CNSA). A küldetés magyar vonatkozása, hogy a szonda leszállóhelye a Kármán Tódor mérnők-fizikus-matematikusról elnevezett Von Kármán kráterbe szállt le.

A Von Kármán kráter. Fotó: NASA

A kínai holdszonda úttörő lett az űrkutatás történetében, most először sikerült ugyanis a Hold túlsó, Földünkről soha nem látható oldalára leszállni. Mivel a szonda ezen a területen landol, így a Földdel való rádió-összeköttetést a Queqiao (Csüecsiao) reléműhold biztosítja. Ezen a rádiózajtól árnyékolt oldalon viszont (mely oldalát a Holdnak gyakran nevezik a Hold “sötét” oldalának, mivel az angol going dark annyit jelent: csöndben maradni) a szonda minden, Földről és Föld körüli műholdakról származó zajtól mentesen végezhet rádiócsillagászati megfigyeléseket is.

A landolás előtti pillanatok. Fotó: CNSA

A landolás előtti pillanatok. Fotó: CNSA

Az első kép a Hold túlsó oldaláról. Fotó: CNSA

A szonda műszerei közt helyet kapott többek között egy szeizmométer, egy neutrondetektor, de az előző küldetéshez hasonlóan a Csang’e-4 is visz magával egy rovert, mely műszerei közé tartozik egy panorámakamera, egy infravörös képalkotó spektrométer, illetve egy, a holdi felszín legfelső száz méteréig “lelátó”, a felszínt borító regolitot vizsgáló radar.

Forrás: China Xinhua News, LRO NASA, Planetology.hu

Szerző: Kovács Gergő

GYORSHÍR: itt az első fotó az Ultima Thule-ről!

Eljött a nap, amire vártunk: megérkezett az első részletes fotó az Ultima Thule kisbolygóról. A képet a New Horizons űrszonda a LORRI (Long-Range Reconnaissance Imager) nevű kamerájával készítette január elsején, magyar idő szerint 6:01-kor, 28 000 km-re az égitesttől.

A “Világ vége” két gömbje külön nevet is kapott: a nagyobb az Ultima, a kisebb a Thule nevet viseli. Fotó: NASA

A mindössze 33 kilométeres Ultima Thule alakja a várt “kutyacsont” formától eltérően inkább két lazán, ütközés nélkül összekapcsolódó gömbre hasonlít, ez is azt bizonyítja, hogy kialakulásuk óta alig vagy egyáltalán nem érte őket behatás.

Kép: NASA

Hogyan jöhetett ez létre? A jórészt jégből álló apró égitestek egyre nagyobb darabokká álltak össze, míg nem maradt csak kettő, az Ultima és a Thule. Ezek egymás körül keringve egyre közelebb kerültek, majd a két bolygócsíra összekapcsolódott, így jött létre ez a különleges alakú égitest.

A következő napokban még több, a mostaninál is jobb fotók várhatóak az Ultima Thule-ről.

Forrás: NASA

Szerző: Planetology.hu