A Hubble Űrteleszkóp (HST) kulcs projektjei, a megfigyelési kozmológia, extragalaktikus csillagászat, csillagok keletkezése és fejlődése témaköreinek vizsgálata mellett a Naprendszer égitesteinek tanulmányozása is hozzátartozik, hiszen például a HST Bolygókameráinak és nagy felbontású kameráinak több változata (WFPC, WFPC2, STIS, NICMOS, ACS, WFPC3)  is ezt utóbbi célt szolgálta a közeli ultraibolyától a közeli infravörösig terjedő tartományban történő képfelvételek készítésével. A HST különösen alkalmas a nagybolygók távolról történő tanulmányozására, mert a megfigyeléseket nem terhelik a földi légkör zavaró hatásai, a nagy objektívátmérő és nagy felbontású kamerái pedig részletes képek elkészítését teszik lehetővé.

A HST 2018. júniusában és júliusában látványos felvételeket készített az idei nyár két  jól megfigyelhető bolygójáról, a Szaturnuszról és a Marsról (a Jupiter is jól megfigyelhető volt a nyáron, de most a HST a gyűrűs-, illetve a vörös bolygóról közzétett színes felvételeit mutatjuk be). A színes felvételeket a HST WFC3 (Bolygókamera 3) színszűrőivel készített képekből állították össze.

A Szaturnusz (balra) és Mars (jobbra) egymás mellett a HST WFC3 (Bolygókamera 3) kamerája által készített képfelvételeken. A Szaturnusz felvétel 2018. június 6-án, a Mars kép 2018- július 18-án készült a bolygók oppozícióihoz közel (kép: STScI-2018-29, July 26, 2018).

A Szaturnusz 2018. június 27-én volt oppozícióban, mintegy 9,048 CsE távolságra a Földtől, a Naptól pedig 10,065 CsE és az égen a Nyilas (Sagittarius) csillagképben tartózkodott, látszó szögátmérője 18,3 ívmásodperc volt. A Szaturnuszról a HST 2018. június 6-án készített felvételeket, még a bolygó mostani oppozíciójához közeledve. Az űrteleszkóp OPAL (Outer Planet Atmospheres Legacy) projektje a Naprendszer külső bolygóinak hosszú időtartamon keresztül történő megfigyelése keretében. Az OPAL projekt során ugyanis a Szaturnuszt is rendszeresen megfigyeli a HST a gyűrűs bolygó láthatósági időszakában, amikor az űrteleszkóp számára is lehetséges a gázóriás megfigyelése. Az óriásbolygók HST-vel történő folyamatos, hosszú időszakra kiterjedő megfigyelése segít ezen bolygók légköri dinamikájának, illetve fizikai-kémiai tulajdonságainak, azok időbeli változásainak nyomon követésében. Egyébként a Szaturnuszról most közzétett HST felvétel az OPAL program keretében készített első kép a gyűrűs bolygóról.

A Szaturnusz a HST WFC3 (Bolygókamera 3) által 2018. június 6-án készített felvételén (kép: STScI-2018-29, July 26, 2018 és NASA/GSFC, July 26, 2018).

A Szaturnusz 27 fokos tengelyferdesége következtében évszakos változások figyelhetők meg a légkörében, illetve a rálátási geometria változása a (földi és földkörüli pályán levő) megfigyelő számára változást mutat. A bolygó mostani oppozíciója idején a bolygó északi féltekéjén nyár van és ott az atmoszférája aktívabb: az északi sarkvidéke körül fényes felhők láncolata figyelhető meg, amelyek széteső viharok maradványai. Alacsonyabb szélességeken kisebb felhőcsomók is megfigyelhetők. A Hubble mostani felvételén is megfigyelhetők az északi pólust körülvevő hatszög-alakzatok (hexagonális alakzatok), amelyeket még 1981-ban a NASA Voyager-1 űrszondája felvételein fedeztek fel.

A Szaturnusz színei a felső felhőrétegek ammónia kristályai (ammónium-hidroszulfid vagy víz) felett lévő különböző szénhidrogén vegyületekből álló ködöktől származnak. A bolygó légkörének sávjait erős szelek és felhők alakítják ki, amelyek  különböző szélességeken fordulnak elő és sávokba rendeződnek.

A Szaturnusz gyűrűjét, mint a bolygót körülvevő folytonos korongot először Christiaan Huygens (1629-1695) holland csillagász azonosította 1655-ben, majd 325 évvel később a NASA Voyager-1 űrszondája a bolygó mellett elrepülve sok-sok vékony és finom gyűrűt, illetve gyűrű-ívet fedezett fel. A gyűrűk kialakulásának korára a NASA Cassini űrszondája adatai szerint mintegy 200 millió évvel ezelőtt, a földtörténeti jura időszakban egy kis Szaturnusz-hold szétaprózódása következtében szétszóródott jeges törmelék. A törmelék további szétaprózódása ma is folytatódik, például a szemcsék egymás közötti ütközése következtében. A HST-képen a Szaturnusz gyűrű részei az A gyűrű, Encke-rés, Cassini-osztás, B és C gyűrűk, valamint a Maxwell-rés is látszik.

A HST mostani, mintegy 20 órát átfogó felvételein a Szaturnusz ma ismert 62 holdja közül 6 holdja: Tethys, Janus, Epimetheus, Mimas, Enceladus és Dione is látszik. A holdak mozgása is megfigyelhető és e közben a bolygó forgása is megmutatkozik. Az erről készült animáció itt tekinthető meg.

A Szaturnusz és a ma ismert 62 holdja közül 6 holdja a HST 2018. június 6-án készült felvételén (több felvétel is készült mintegy 20 órán keresztül, amelyeken követhető a holdak mozgása). A képen a legnagyobb hold a Dione, ami egyébként a Szaturnusz negyedik legnagyobb holdja. A képen a legkisebb hold a szabálytalan alakú Epimetheus (kép: STScI-2018-29, July 26, 2018).

Most nézzük a HST-vel készült Mars-felvételt. Bár a Mars körül több űrszonda kering és figyeli a vörös bolygó felszínét, légkörét és a bolygó közvetlen közeli kozmikus környezetét, illetve a felszínén is marsjárók (roverek) tevékenykednek, de a földi és HST megfigyelések is alapvetően fontosak a vörös bolygó felszínének és légköri jelenségeinek globális monitorozásához. Ugyanis míg a roverek és a mars-orbiterek a légkör alacsonyabb rétegeit tanulmányozzák, addig a távoli csillagászati megfigyelések, mint a HST megfigyelései a Mars felső légköri állapotát tudják követni. A marsi évszakok, hasonlóan a földiekhez a bolygó tengelyferdesége (a Marsnál ez mintegy 25 fok) következtében jönnek létre. A bolygó erősebben elnyújtott ellipszis pályája, a ritkább légköre, valamint az északi és déli féltekéje közötti felszíni különbségek is befolyásolják az évszakok következményeit.

A Mars közepes porviharai kontinensnyi kiterjedésűek és hetekig is eltartanak, de a globális porviharok akár az egész bolygóra kiterjednek és hónapokig is eltarthatnak. A Mars déli féltekéjén tavasszal és nyáron, amikor a bolygó napközelben van és a besugárzás maximumában erős szeleket kelt.

A HST 2018. július 18-án  készített felvételeket a vörös bolygóról, szűk egy héttel annak mostani nagy földközelsége előtt. A mostani oppozíciója július 27-én következett be (a Bak [Capricornus] csillagképben) és ekkor a Mars 57,8 millió km távolságra volt tőlünk.  A Mars mostani oppozíció után négy nappal, július 31-én volt legközelebb a Földhöz 57,6 millió km távolságra. Azokban a napokban bolygó látszó átmérője a Földről nézve mintegy 24 ívmásodperc volt, ami a 2003-as hasonlóan nagy oppozíció korong méretének 97%-a. Most, 2018-ban a Mars déli féltekéjén volt tavasz és nagy globális, az egész bolygóra kiterjedő porvihar alakult ki, ami elfedte a bolygó felszíni alakzatait a távoli földi távcsövek, illetve HST kamerája elől, de néhány jelentősebb felszíni alakzat átsejlik a HST felvételeken.  A HST WFC3 (Bolygókamera 3) kamerája több színszűrőjén keresztül készült felvételeiből bolygó színes képét állították elő: UVIS csatorna F275W széles sávú ultraibolya, F410M közepes sávú kék, F502N keskeny sávú sárga és F675N keskeny sávú vörös szűrőivel. A HST Mars felvételén az Arabia Terra, Sinus Meridiani (ahol a NASA Opportunity marsjárója is van), Sinus Sabaeus és a Hellas-medence, valamint az északi és déli pólusvidék feletti felhők is kivehetőek. Mivel a mostani oppozíciókor a Mars északi féltekéjén ősz van, ezért az északi sarkvidék felett markánsabb felhőtakaró van. A Mars két holdja, a Phobos és Deimos is látszik halvány pontforrásként.

A HST különböző színszűrös felvételeiből összeállított színes képe a Marsról 2018. július 18-án 12:43 világidőkor (a felvételek közepe). A globális porvihar által a bolygó részben eltakart 6 felszíni alakzata is kivehető  (kép: STScI-2018-29, July 26, 2018).

Az alábbi képen a Mars felszíni alakzatai és felhőinek helye be van jelölve (l. az előző képet is).

A HST különböző színszűrös felvételeiből összeállított színes képe a Marsról 2018. július 18-án 12:43 világidőkor (a felvételek közepe). A globális porvihar által a bolygó részben eltakart 6 felszíni alakzata is kivehető: Sinus Meridiani, Arabia Terra, Sinus Sabaeus, Hellas-medence, északi és déli pólusok környéki felhők, valamint a Phobos és Demos holdak (körökkel jelölve)  (kép: STScI-2018-29, July 26, 2018).

Végül összehasonlításul a két évvel ezelőtti, 2016-os Mars-oppozícióhoz és a mostani oppozícióhoz közeli két felvételt érdemes összehasonlítani, amelyek a bolygó ugyanazon területeit mutatják a HST-ről nézve. A két évvel ezelőtti oppozíció idején az északi félteke „dőlt” a Föld felé, vagyis az északi féltekére jobban rá lehetett látni és egyben a Nap is ott magasabban járt (oppozíciókor a Mars a Nappal ellentett oldalon van a Földről nézve csaknem egy vonalban). Most, 2018-ban pedig a déli féltekét melegíti jobban a Nap, többek között a porviharok kiindulási helyének tartott Hellas-medencét is és így nem csoda, hogy most globális porvihar alakult ki a Marson.

A Mars 2016-os és 2018-as oppozícióinak összehasonlítása: a HST-vel 2016. május 12-én (bal oldali kép) és 2018. július 18-án készült kép (jobb oldali kép) a bolygó ugyanazon területeit mutatják. Szembetűnő az a különbség, hogy a 2016-os oppozíció idején a Mars felszíni alakzati jól megfigyelhetők, míg a globális porvihar miatt a 2018-as oppozícióhoz időben közeli felvételen a por elfedi azokat (kép: STScI-2018-29, July 26, 2018).

Tehát a Mars-oppozíciók nem egyformák és nem  csak a Földtől való távolság miatt, hanem a porviharok keletkezési körülményeit tekintve sem, így a 2018-as marsközelség nem kedvezett sem a csillagászati sem pedig a helyszíni űreszközök által a bolygó felszínének tanulmányozásához.

Ellenben a Szaturnuszt jól meg lehetett figyelni a Földről – bár alacsonyan látszott a horizont felett az északi féltekéről, illetve a HST az OPAL program keretében lekészített az első felvételét a gyűrűs gázóriásról.

A Hubble Űrteleszkóp egy a NASA és ESA közötti nemzetközi projekt együttműködés keretében működik. A NASA Goddard Űrközpontja a Maryland állambeli Greenbeltben működteti a teleszkópot. Az Űrteleszkóp Tudományos Intézete (STScI) a Maryland állambeli Baltimoreban koordinálja és vezeti a Hubble tudományos kutatási programját. Az STScI a NASA és a Csillagászati Kutatásra az amerikai Egyetemek Közötti Társulás keretében működik Washington D.C-ben.

 

Források:

STScI-2018-29 (hubblsite.org/news_release/news/2018.-29, July 26, 2018)

http://hubblesite.org/news_release/news/2018-29

STScI heic1814 – Photo Release (26 July 2018)

https://www.spacetelescope.org/news/heic1814/

Saturn and Mars team up to make their closest approaches to Earth in 2018 (NASA/GSFC, July 26, 2018)

https://www.nasa.gov/feature/goddard/2018/saturn-and-mars-make-closest-approaches-in-2018/

New family photos of Mars and Saturn from Bubble (ESA/ST-ECF, HEIC1814, 26 July 2018)

http://sci.esa.int/hubble/60521-new-family-photos-of-mars-and-saturn-from-hubble-heic1814/

 

Kapcsolódó internetes oldalak:

Kovács Gergő: Marsközelben (planetologia.hu, 2018. augusztus 3.)

Kovács Gergő: Vizet találtak a Marson? (planetology.hu, 2018. július 29.)

Kovács Gergő: Holdfogyatkozás és Mars-közelség július 27-én (planetology.hu, 2018. július 18.)

Kovács Gergő: Szerves vegyületek és metán a Marson (planetology.hu, 2018. június 8.)

Horváth Miklós: A Mars bolygóról (planetology.hu, 2018. május 8.)

Kovács Gergő: Balogh Gábor – Félelem és rettegés. Phobosz és Deimosz, a különös Mars-holdak
/Félelem és Rettegés, Mars isten fiai/ (planetology.hu, 2018. május 16.)

Kovács Gergő: InSight: Irány a Mars! (planetology.hu, 2018. május 4.)

Kovács Gergő: Heller Ágost – A Mars bolygó physikai viszonyairól (planetology.hu, 2018. április 19.)